百韵网 >>  正文

煤层气勘探开发的几个基础问题浅析 寿阳区块煤层气勘探开发现状、地质特征及前景分析

来源:www.baiyundou.net   日期:较早时间

傅雪海

(中国矿业大学资源与地球科学学院 江苏徐州 221008)

作者简介:傅雪海,1965年9月生,男,湖南衡阳县人,博士,教授,博士生导师,从事能源地质的教学与科研工作。

项目:国家重点基础研究发展规划——“973”煤层气项目(编号:2002CB211704)。

摘要 本文从煤层气的赋存方式、超临界吸附、低煤级煤的含气量的测试方法、采动影响区动态含气量、煤层气的多级压力降与多级渗流、煤储层渗透率的气体滑脱效应、有效应力效应、煤基质收缩效应、煤储层压力中水压与气压的关系、高煤级煤产气缺陷及煤层气平衡开发等方面对我国煤层气勘探开发的应用基础研究问题作了简要剖析。指出针对各煤级煤储层特征,实行平衡开发,是保障我国煤层气勘探开发持续、稳定发展的重要措施。

关键词 煤层气 动态含气量 动态渗透率 平衡开发

Brief Analysis on Several Basic Issues in CBM Exploration and Developme nt

Fu Xuehai

(China University of Mining and Technology,Xuzhou 221008)

Abstract:This article briefly analyzed several basic issues in CBM exploration and development,including CBM existence ways,supercritical absorption,test method of gas content for low rank coal,dynamic gas content in mining impact zone,CBM multi-level pressure dropping and multi-level percolation flow,gas slippage effects of coal reservoir permeability,effective stress effects,coal matrix shrinkage effects,the relationship between gas pressure and water pressure in the coal reservoir,gas problems in high rank coal and CBM balance development and so on.The author pointed out that the balance development of CBMfor various rank coals is important measure to ensure the continuing and stable development of China's CBM.

Keywords:CBM;dynamics gas content;dynamic penetration;balance development

引言

煤层气藏为介于固体矿藏与流体矿藏之间的一种特殊类型压力-吸附矿藏。美国通过30多年的研究,建立了中、低煤级煤生储优势、次生生物气成藏、煤储层双孔隙导流等基础理论体系,形成了煤储层孔、渗、吸附性等物性室内实验测试技术、排水降压开发煤层气技术、与储层物性相适应的完井技术、增产技术、多井干扰技术、储层压力与渗透率现场试验技术、煤层气、水产能数值模拟技术等为核心的煤层气勘探开发技术[1~8]。此理论除在加拿大有一定的适应性外,其他近30个国家或地区应用效果不佳,揭示该理论存在着较大的局限性。我国在各煤级煤矿区施工了600 多口煤层气井、10余个井组,大多进行了试气排采,煤层气、水产能稳定性差,井与井之间、同一口井不同排采阶段之间变化极大,煤层气产量与试井渗透率的关系并不十分一致,甚至高渗透率低产量,低渗透率却具有较高的稳定气产量[9]。这一现实使我国煤层气工作者感到迷惑,严重扰乱了我国煤层气的勘探开发部署。储层参数与排采工作制度怎样配置才能获得稳定、连续的产能呢?不同学者或工程技术人员从自己的专业范围就上述问题的某一方面曾作过一些有益探索,未从整体上去把握。本文就我国煤层气勘探开发工作中面临的应用基础研究问题提出一些想法,与大家一起讨论。

1 煤层气的赋存方式与低煤级煤含气性问题

1.1 固溶气问题

煤层气由吸附气、游离气、水溶气三部分组成已得到煤层气工作者的公认。但煤与瓦斯突出时的相对瓦斯涌出量是煤层含气量的数倍至近百倍也是不争的事实,就是煤层采动影响区的煤层气和围岩中的煤成气也不可能达到如此高的程度。显然艾鲁尼提出的固溶体是客观存在的,甚至在煤层气总量中的比例远高于艾鲁尼认为的替代式固溶体2%~5%、填隙式固溶体5%~12%这一比例[10]。固溶气(体)可能与天然气水合物——可燃冰类似,在煤与瓦斯突出时被释放出来,由此可见固溶气(体)亦是煤层气的一种重要赋存方式。

1.2 超临界吸附问题

平衡水条件下,煤对甲烷的吸附性呈“两段式”演化模式,即朗氏体积先随煤级的增大而增加,后随煤级的增大而降低,其拐点(即极大值点)大约在镜质组最大反射率3.5%~4.5%这一区间内,在褐煤和低煤化烟煤阶段受煤岩组分的影响波动性较大[11]

地层条件下,煤层甲烷超临界吸附的现象是存在的。但只有当煤层甲烷压力(气压)超过5.18MPa(表1)才真正出现超临界流体,实际上在我国煤矿瓦斯实测压力中超过此压力的矿井是比较少的。但对于原位且处于封闭系统的煤储层,储层中水压等于气压,只要煤层埋深超过600m,煤层甲烷就可能成为超临界流体。

图1 二氧化碳和乙烷在正常温压梯度条件下的液化区间

对于甲烷和氮气,任一埋深储层温度均高于临界温度,无论压力多大,均不会液化;对于二氧化碳,当储层温度低于31.1℃(表1),对于乙烷,当储层温度低于32.4℃(表1),而储层压力(气压)高于液化压力,二者可以呈液态形式存在。按正常地温梯度3℃/100m、正 常 储层 压 力 梯 度0.98MPa/100m,设恒温带深度为20m、温度为10℃,则埋深400m左右,储层温度约为22℃、储层压力为3.9MPa,此时二者均低于临界温度和压力,二氧化碳和乙烷以气态形式存在;当埋深达到800m,储层温度约为34℃,高于临界温度,二氧化碳和乙烷仍为气态。但当二氧化碳压力大于7.38MPa、乙烷压力大于4.98MPa,二氧化碳和乙烷有可能成为超临界流体;只有在400~800m范围内的局部层段(封闭体系),储层温度低于临界温度,储层压力高于液化压力,二氧化碳和乙烷才可能以液态形式存在(图1)。

表1 煤层气组分的简明物理性质[12]

*在30℃时进行二氧化碳等温吸附实验时得出。

对于以甲烷为主,含有二氧化碳、氮气、乙烷的煤层气而言,其超临界状态和液化的温度和压力条件是下一步值得关注的问题之一。

1.3 低煤级煤含气量的测试问题

我国煤层含气量现场测试大多是基于MT-77-84解吸法标准得出的,对中、高煤级煤适应性较好,但对于分布在我国东北、西北地区的低煤级煤而言,实测含气量明显偏低,由于低煤级煤孔裂隙发育,取心过程在地层温度条件下快速解吸,到地面由于温度降低,解吸速度变慢,有的甚至没有解吸气,由解吸气推算的损失气也就明显偏低。中国煤田地质总局1995~1998年进行的煤层气资源评价时就没有涉及到褐煤,其他单位和个人大多基于褐煤平衡水等温吸附实验来推算褐煤的含气量,从而计算出资源量。因此低煤级煤储层中的煤层气资源量大小不同是造成我国各单位和个人计算煤层气资源量差异的根本原因。

基于低煤级煤层的含水性、孔裂隙特点、温度、压力条件,分别进行吸附气、水溶气和游离气的数值模拟,厘定低煤级煤含气量是我国下一步的研究方向之一。

1.4 采动影响区动态含气性的问题

煤矿采动影响区是地面煤层气开发或井下瓦斯抽放的有利部位。煤矿井巷开拓和煤炭生产改变了煤层的地应力场、流体压力场,打破了煤层内游离气、吸附气和水溶气之间的动态平衡关系。煤矿采动影响区因为煤层卸压,裂隙张开或形成新的裂隙,又因为矿井通风,采动影响区与暴露煤壁间连续出现甲烷浓度差,使煤层渗透性、扩散性能大大增强,煤层气发生解吸,并在浓度梯度、压力梯度作用下向巷道或工作面扩散、渗流或紊流。随着巷道和采煤工作面的连续推进,采动影响区内煤层的含气量呈现出动态变化特征。

煤矿采动影响区可划分为本煤层采动影响区(水平采动影响区)、邻近层采动影响区(垂向采动影响区)和煤炭资源残留区[13]。本煤层采动影响区又可进一步分为掘进巷道和采煤工作面采动影响区。采动影响区内煤层动态含气量与煤壁暴露时间(采煤或掘进工作面推进速度)和距暴露煤壁的距离有关,任何一点的煤层气流速、流向和瓦斯压力均随时间的变化而变化,即为非稳定流场,求其解析解很困难。只有采用数值模拟的方法,如有限元法、瓦斯压力连续测定法、瓦斯涌出量法、瓦斯排放效率法等来近似地估算[13]

2 煤层气多级压力降与多级渗流问题

煤储层是由气、水、煤基质块等多种物质组成的三相介质系统。其中气组分具有多种相态,即游离气(气态)、吸附气(准液态)、吸收气(固溶体)、水溶气(溶解态);水组分也有多种形态,即裂隙、大孔隙中的自由水、显微裂隙、微孔隙和芳香层缺陷内的束缚水、与煤中矿物质结合的化学水;煤基质块则由煤岩和矿物质组成。在一定的压力、温度、电、磁场中各相组分处于动平衡状态。在排水降压或外加场干扰作用下开发煤层气的过程中,三相介质间存在一系列物理化学作用,其储层物性亦相应发生一系列变化,单一相态的实验研究很难模拟煤储层的真实物性状态。

煤储层系由宏观裂隙、显微裂隙和孔隙组成的三元结构系统[11]。在排水降压开发煤层气的过程中各结构系统压降程度不同,客观上存在着三级压力降,煤层气-水的运移也相应地存在着三级渗流场,即宏观裂隙系统(包括压裂裂缝)——煤层气的层流-紊流场、显微裂隙系统——煤层气的渗流场、煤基质块(孔隙)系统——煤层气的扩散场[14]。扩散作用又包括整体扩散、克努森型扩散和表面扩散,渗流亦存在达西线性渗流和非线性渗流。煤层气开发,上述三个环节缺一不可,且气、水产能受制于渗流最慢的流场。前期研究大多忽略气体的扩散作用,渗流方程只考虑前两个环节,数值模拟气、水产能与实际情况相差甚远,且过于强调宏观裂隙,即试井渗透率的研究,忽略煤岩体实验渗透率及扩散系数的测试分析。因此,与煤储层孔裂隙结构系统相匹配的解吸—扩散—渗流—紊流多级耦合问题、与煤储层孔裂隙结构系统相匹配的煤层气产能模拟软件是下一步煤层气勘探开发应用基础研究方向之一。

3 储层压力中的水压与气压的关系问题

煤储层流体压力由水压与气压共同构成。美国煤储层压力以水压为主,气、水产能稳定、持续;我国煤储层压力构成复杂,气压占有较大比例,不同压降阶段,煤层气、水产能不同,在总体衰减的趋势下呈跳跃性、阶段性变化[15]

水动力势是煤层气富集和开发的最活跃因素,是储层压力或地层能量的直接反映和主要贡献者;水的不可压缩性对裂隙起支撑作用,水动力又是煤储层渗透率的维持者。我国中、高煤级煤层为相对隔水层,煤层本身的水体弹性能较低,气体弹性能较高[16]

美国以单相水流作为介质测试煤储层压力和渗透率的试井方法应用到我国以气饱和为主的煤储层肯定会存在较大缺陷,也就是说用美国的试井方法得出的我国煤储层压力和渗透率是不确切的,由储层压力、含气量和等温吸附曲线计算的含气饱和度、临界解吸压力、理论采收率同样是不确切的。

笔者认为处于封闭系统的煤储层,其水压等于气压,处于开放系统的煤储层,其储层压力等于水压与气压之和。煤储层压力构成及其传导、煤储层中气、水介质之间的相互关系,控制了煤层甲烷的解吸、扩散和渗流特征,是目前煤层气开发亟待解决的关键科学问题。

4 煤储层动态渗透率问题

煤储层在排水降压过程中,随着水和甲烷的解吸、扩散和排出,其渗透率存在有效应力效应、煤基质收缩效应和气体滑脱效应,三种效应综合作用使煤储层渗透率呈现出动态变化[11]

4.1 有效应力效应

有效应力是裂隙宽度变化的主控因素。有效应力增加会使裂隙闭合,使煤的绝对渗透率下降。渗透率越低,相对变化越大,有的减少两到三个数量级。在排水降压开发煤层气的过程中,随着水和气的排出,煤储层的流体压力逐渐降低,有效应力逐渐增大,煤储层渗透率呈现出快速减少、缓慢减少的动态变化过程[11]

4.2 煤基质收缩效应

气体吸附或解吸导致煤基质膨胀或收缩,可用朗格缨尔形式来描述,笔者用CO2作为介质对不同煤级圆柱体煤样(每点只平衡12h)进行过吸附膨胀实验,结果表明煤基质收缩系数随煤级的增大而减少[11]。煤层气开发过程中,储层压力降至临界解吸压力以下时,煤层气开始解吸,煤基质出现收缩,由于煤储层侧向上受到围限,煤基质的收缩不可能引起煤储层的整体水平应变,只能沿裂隙发生局部侧向应变,使煤储层原有裂隙张开,裂隙宽度增大,渗透率逐渐增高,且中煤级煤增加的幅度大于高煤级煤[11]

4.3 气体滑脱效应

在煤这种多孔介质中,由于气体分子平均自由程与流体通道在一个数量级上,气体分子就与流动路径上的壁面相互作用(碰撞),从而造成气体分子沿通道壁表面滑移。这种由气体分子和固体间相互作用产生的滑移现象,增加了气体的流速,使煤的渗透率增大,且随着储层压力的降低,先缓慢增加,到低压时快速增大。

5 高煤级煤储层产气缺陷问题

高煤级煤储层渗透率对应力敏感性强,应力渗透率衰减快;高吸附性、微孔性,自封闭性效应明显;高煤级煤束缚水饱和度大,相渗能力低;经历的构造运动期次多,其反复加压和卸压,渗透性损害极大;煤基质收缩能力弱,煤层气开发过程中其渗透率较难得到改善[17]

第一,高煤级煤储层显微裂隙不发育。高煤级煤储层大多经过强烈的构造运动,煤层呈碎裂煤、碎斑煤和糜棱煤。

第二,高煤级煤储层应力渗透率衰减很快。流体压力不变、围压不断增大的渗透率实验表明:高煤级煤岩体的渗透率随围压增大呈指数形式降低,且衰减系数远大于中煤级。由于地应力梯度(我国通常为1.6MPa/100m左右)大于储层压力梯度(正常压力梯度为0.98MPa/100m),因此,随煤层埋深的增加,煤储层有效应力增大,煤储层渗透率降低。

第三,高煤级煤相渗能力低。相对渗透率表明:高煤级煤束缚水饱和度大,介于71.3%~84.82%之间,单相水流和气、水双相渗流区域狭窄。气-水双相渗流时,高煤级煤最大气相相对渗透率与最大水相相对渗透率之和介于25.4%~40.78%之间,平均为33.2%,即气相与水相有效渗透率之和约为其克氏渗透率的1/3;束缚水下高煤级煤气相渗透率只有其克氏渗透率的15.7%~22.1%,平均为18.2%,即多相介质条件下,高煤级煤有效气相渗透率不及其克氏渗透率的1/5[11]

在排水降压开发煤层气的过程中,流体沿渗透性较好的区域指进,使指进流体绕过较大面积的被驱替相,形成被驱替相的一座座“孤岛”。高煤级煤束缚水饱和度大,即这样的“孤岛”较多,排水降压困难,煤层气难于解吸,大部分煤层气被残留,然而由于其吸附时间只有1~9d,所以能较快(数月后)达到产气高峰,造成高资源量、低产能之“瓶颈”现象[17]

第四,高煤级煤储层渗透率改善能力弱。多相介质煤岩体吸附/膨胀实验表明,高煤级煤吸附最大,膨胀量低于中煤级煤。反过来,煤的吸附/膨胀与解吸/压缩互为可逆过程,即在煤层气的开发过程中,高煤级煤的收缩能力较弱。数值模拟结果表明煤基质收缩引起的渗透率正效应低于有效应力引起的渗透率负效应,高煤级煤储层渗透率在煤层气排采过程中逐渐衰减。

开展不同煤级煤柱样甲烷吸附(吸附平衡时间长达数月)膨胀实验、测试不同压力降、不同孔裂隙结构的气、水流量和扩散能力是下一阶段煤层气勘探开发的重要研究方向。

6 煤层气平衡开发问题

煤储层由多元孔裂隙结构组成,煤层气排采时存在多级压力降和多级扩散/渗流场,由于前期受急功近利的思想支配,煤层气井排采常打破煤储层气-水相渗平衡,没有处理好套压、液面降深和井底压力三者之间的关系,因气、水产能的过度增加,势必加速原始储层内能的消耗,使生产的持续时间缩短。因此,在试气排采阶段,针对不同的储层物性条件,多开展关井测压工作,绘制压力恢复霍纳曲线图,求出压力恢复曲线的斜率,再进一步据关井测压前的平均日产量折算成储层内的体积流量,并结合储集系数和压缩系数来估算气井现实条件下储层内的气体流动系数和气相有效渗透率,从而确定该储层的平衡产能[18]。据沁南 TL007 井和铁法 DT3 井产能历史分析,沁南 TL007 井的平衡产能为2000m3/t左右,铁法DT3井的平衡产能为3000m3/t左右[9]。因此,在排采工作制定时,不断调整套压、液面降深和井底压力,维持气、水产能平衡开发,增长井孔服务年限,是下一步煤层气勘探开发所要关注的问题之一。

7 结论

中国煤层气开发目前处于商业化生产的启动阶段。煤层气超临界状态和液化的温压条件、低煤级煤的含气量测试方法、采动影响区动态含气量、排水降压开发的动态渗透率、煤储层压力构成及其传导、煤储层中气、水介质之间的相互关系、与煤储层孔裂隙结构系统相匹配的解吸—扩散—渗流—紊流多级耦合理论、与煤储层特征相适应的钻井、完井、增产技术、与煤储层孔裂隙结构系统相匹配的排采工作制度和产能模拟软件等均是下一步煤层气勘探开发的应用基础研究课题。

参考文献

[1]Harpalin S,Miphreson M J.1986.The effect of gas pressure on permeability of coal.2nd US Mine Ventulation Symp,369~375

[2]Reeves S R,Decker A D.1991.Reservoir simulation investigation into the interaction of in-situ stress,pore pressure,and coal rank on coalbed methane exploration strategy.Proceedings Gas Technology symposiums,83~91

[3]Puri R,Evanoff J C.1993.Measurement of coal cleat porosity and relative permeability.In:International Coalbed Methane Symposium,SPE 21491,93~103

[4]Palmer L,Mansoori J.1998.How permeability depends on stress and pore pressure in coalbed:A new model.SPE Reservoir Evaluation &Engineering,December,124~136

[5]Thotsaphon C,Chen H X,and Lawrence T W.2001.Impacts of Permeability Anisotropy and Pressure Interference on Coalbed Methane(CBM)Production.Proceedings-SPE Rocky Mountain Petroleum Technology Conference,Petroleum Technology-Leads the Way,323~329

[6]Scott A R.2002.Hydrogeologic fators affecting gas content distribution in coal beds.International Journal of coal Geology,50:363~387

[7]Joshua C E.2002.Simplified Prediction of Reservoir Pressure in Coalbed Methane Wells.SPE Eastern Regional Conference Proceedings,49~57

[8]David S,Mike K.2003.Producing Coalbed Methane at High Rates at Low Pressures.Proceedings SPE Annual Technical Conference and Exhibition,4035~4042

[9]傅雪海,秦 勇,范炳恒等.2004.铁法DT3 井与沁南TL-007 井煤层气产能对比研究.煤炭学报,29(6):712~716

[10]艾鲁尼.AT.唐修仪,宋德淑等译.1992.煤矿瓦斯动力现象的预测和预防.北京:煤炭工业出版杜,142~147

[11]傅雪海.2001.多相介质煤岩体(煤储层)物性的物理模拟与数值模拟[博士学位论文].徐州:中国矿业大学

[12]吴树森.1989.界面化学.武汉:华东化工学院出版杜,190~200

[13]傅雪海,秦勇,周荣福等.2005.采动影响区煤层动态含气量数值模拟.天然气地球科学,16(3)359~362

[14]彭金宁.2006.铁法盆地煤储层多级渗流特征研究(硕士学位论文).徐州:中国矿业大学

[15]叶建平.2002.水文地质条件对煤层气产能的控制机理与预测评价研究[博士学位论文].北京:中国矿业大学(北京校区)

[16]吴财芳,秦勇,傅雪海,林伯泉.2005.煤基块弹性能及其与地质控制因素之间的关系.中国矿业大学学报,34(5):636~639

[17]傅雪海,秦勇,姜波等.2004.高煤级煤储层煤层气产能“瓶颈”问题研究.地质论评,50(5):507~513

[18]顾谦隆,曹立刚.2001.煤层气排采中关井测压和放压实验.中国煤田地质,13(1):25~27



寿阳区块煤层气勘探开发现状、地质特征及前景分析~

王明寿1 王楚峰1 魏永佩2 张心勇1 徐文军1
(1.中联煤层气有限责任公司 北京 100011;2.美国远东能源公司 北京 100016)
作者简介:王明寿,男,1966年出生,高级地质师,在职博士生,矿产普查与勘探专业,现在中联煤层气有限责任公司工作,多年从事煤炭、煤层气勘探、生产及科研工作。
摘要 煤层气的富集与储层特征密切相关,并受地质条件的制约。本文在详细研究煤储层特征及煤层气富集机制的基础上,分析和总结了沁水盆地北端寿阳区块煤层气的勘探开发现状,并对开发前景进行了初步评价。基于煤岩、煤质、煤体结构及孔渗性、吸附性的观察和测试,该区煤层表现为厚度大、热演化程度高,局部发育构造煤、裂隙较发育,吸附性能力强、含气量高,含气饱和度偏低。总体来说,适合煤层气的开发。该区煤层气的富集主要受控于热演化史和埋藏史。在区域变质的背景上,叠加了岩浆热变质作用,生气强度大;另外,煤层的埋深、顶底板封闭性及水文地质条件都会影响含气量的大小,煤层气富集是多因素有效配置的结果。
关键词 煤储层 含气量 热演化 羽状水平井 寿阳区块
Analysis on Status,Geology Features and Prospects of CBM Exploration and Development in Shouyang Block
Wang Mingshou1,Wang Chufeng1,Wei YongPei2,Zhang Xinyong1,Xu Wenjun1
(1.China United Coalbed Methane Corporation,Ltd.,Beijing 10001 1;2.Far East Energy Company,Beijing 100016)
Abstract:Coalbed methane(CBM)enrichment depends on reservoir characteristics,and it is also conditioned by geologic setting.On the basis of detailed study on the reservoir physical characteristics and CBM enrichment mechanism,exploration and development actuality was summarized and foreground was prospectedresearch findings in Shouyang Block,northern Qinshui Basin.According to observation and test for coal type,coal quality,coal structure and porosity-permeability,adsorbability,some characteristics of coal bed are displayed as follows:thick reservoir,high thermal evolution,local structural coal,developed fracture,noticeable adsorbability,high gas content,low gas saturation.In one word,research area fits for CBMexploitation.The CBM enrichment is controlled by thermal evolution history and burial history.Owing to magma thermal metamorphism superimposing on the regional metamorphosis,the intensity of gas generation is higher;Moreover,burial depth,closure property of adjacent rock,and hydrologic geology also affect gas content,CBM enrichment is the result of sound multifactorial matching.
Key words:CBM reservoir;Gas content;Thermal evolution;Multilateral horizontal well;Shouyang Block
引言
寿阳区块位于山西省北中部、沁水盆地北端(图1),相邻的阳泉矿区是我国著名的无烟煤生产基地之一,也是典型的高瓦斯矿区,从1957年就开始煤矿瓦斯抽放与利用工作[1]。在多年的煤矿生产实践中,积累了丰富的煤矿瓦斯抽放经验,是我国煤矿瓦斯抽放和利用最成功的矿区。现建有8座瓦斯抽放站,抽放历史长,目前年瓦斯抽放量达2×108m3,占全国第一位[2]。20世纪80年代初,随着我国煤层气勘探开发的兴起,寿阳区块以其良好的资源条件及开发条件成为我国煤层气开发的热点。从1996年中国煤田地质总局在韩庄区施工HG1井开始,近十年来先后有多家单位在区内开展煤层气基础研究和煤层气勘探开发试验工作,施工了10口煤层气参数井或生产试验井(包括远东能源公司施工的3口煤层气羽状水平井),煤层气的勘探开发工作取得了阶段性进展。本文对近年来该区块的煤层气勘探开发活动进行了总结,针对该地区煤层气勘探实践过程中遇到的一些地质技术问题,对该区煤层气的富集机制和控气因素进行了探讨,以期指导勘探工程部署,从而实现该地区煤层气开发的突破。

图1 研究区交通位置图

1 勘探开发历史及现状
研究区煤层气勘探开发的历史可追溯到20世纪70年代,1975年,原煤炭部在阳泉矿区施工了一些煤层气地面抽放井,有的井还进行过井下压裂以提高产量,但限于当时的技术条件和认识水平,未取得预期的目的[3]。
1995年由联合国开发计划署(U N DP)利用全球环境基金资助、煤科总院西安分院承担的《中国煤层气资源开发》项目,《阳泉矿区煤层气资源评价》专题科研报告,对阳泉矿区(包括生产区、平昔区和寿阳区)煤层气资源开发进行了评价和研究,其中重点对寿阳区的煤层气资源开发进行了评价和研究。
中国煤田地质总局于1996~1997年在韩庄井田施工了HG1、HG6、HG3、HG2等煤层气勘探参数井,获得了该区有关的煤储层参数。其中对HG6井的主要煤层进行了压裂改造和排采试验,取得了该井合层排采的一整套生产数据。
1996年阳泉矿务局与煤炭科学研究总院西安分院合作,针对阳泉矿区寿阳区煤层气资源进行了评价研究,并且共同完成了《阳泉矿区寿阳区煤层气勘探开发可行性研究报告》。
中联公司1997~1998年在寿阳区块施工了4口煤层气井,其中1口探井,3口生产试验井,获得该区宝贵的煤储层参数和生产数据。1998年完成了四条二维地震勘探线,共计167km,获得了较丰富的地质成果;
2002年4月16日,美国康菲公司与中联公司正式签订PSC合同;2003年6月,康菲公司与远东公司签订寿阳项目转让协议,由远东公司接任作业者,根据对寿阳区块以往勘探资料的分析,项目联管会认为常规的垂直井压裂完井技术在该区效果不太理想,决定在该区块实施羽状水平井,以期取得开发的突破。2005年,远东公司在该区施工了3口羽状水平井,其中2口在煤层段进尺超过3000m,目前,3口井均在进行生产。
2 地质背景
沁水盆地北端位于北北东向新华夏系第三隆起带太行山隆起以西,汾河地堑东侧,阳曲—孟县纬向构造带南翼。总体形态呈现走向东西、向南倾斜的单斜构造。区内构造简单,地层平缓,倾角一般在10°左右。
寒武纪至中奥陶世,本区地壳稳定沉降,在古老结晶基底上形成了浅海相碳酸盐为主的沉积。中奥陶世以后,由于加里东地壳运动,华北断块上升,全区遭受长期剥蚀。到中石炭世,本区地壳再次沉降,沉积了石炭二叠纪海陆交互相含煤地层,奠定了形成煤层气的物质基础。随着上覆三叠系地层的沉积,石炭二叠纪煤层的埋深增加,地温、压力的增高,煤层发生深成变质作用。印支运动使本区整体抬升,广泛遭受剥蚀。早中侏罗世,发生了强烈的燕山运动,形成了北有孟县隆起,南有中条山隆起,东有太行山隆起,西有吕梁山隆起的沁水盆地。由于喜马拉雅运动的再次改造,沁水盆地被晋中断陷和霍山隆起分割为三个部分,即沁水煤田、西山煤田和霍西煤田。沁水向斜构成了一个独立的小构造盆地,本区即处于沁水向斜的北部转折端。
燕山运动和喜马拉雅运动期间,由于较大规模的岩浆侵入活动,大地热流背景值升高,本区石炭二叠纪煤层在原来深成变质作用的基础上,又叠加了区域岩浆热变质作用,致使煤化作用大大加深,形成了本区高变质的瘦煤、贫煤以及少量无烟煤。
3 煤储层特征
3.1 主要煤层及其特征
主要含煤地层为上石炭统太原组及下二叠统山西组,含煤10余层,其中3#、15#煤为主力煤层。
上主煤层(3#煤层):俗称七尺煤,位于山西组中上部,距下石盒子组与山西组分界砂岩(K8)20~30m左右,全区煤层厚0~3.78m,煤层较稳定,寿阳矿区西部和阳泉三矿矿区煤层较厚,其他地区煤层变薄,甚至尖灭。结构简单,有时含一层夹矸,顶底板为泥岩,砂质泥岩、粉砂岩,局部为炭质泥岩和细砂岩。
下主煤层(15#煤层):位于太原组下部,石灰岩标志层(K2)底部为其直接顶板,煤厚0.27~6.48m,全区稳定,是研究区煤层气开发的主力煤层。在寿阳县城附近存在一潮道砂体,出现走向近南北,长10km,宽4km的无煤带。15号煤层含夹矸1~3层,结构中等,底板为泥岩、砂质泥岩,局部为细砂岩和炭质泥岩。
3.2 煤储层裂隙特征
从研究区内生产矿井井下观测,以及定向块样显微镜下观察裂隙密度和间距定量统计,煤中规模小的裂隙比规模大的裂隙发育,从中型、小型到微型,裂隙的密度增加,间距减小。裂隙的发育程度还与煤岩组分有关,从暗淡型煤、半暗型煤、半亮型煤到光亮型煤,裂隙的密度增大,间距减小。
镜煤中裂隙一般平直,垂直层理面,少数斜交层理面,显微镜下观察裂隙宽度为2~15μm;亮煤和暗煤中裂隙形态比较复杂,有锯齿状、分叉状、阶梯状、雁行状等,显微镜下测量裂隙宽度一般为8~45μm。
煤中裂隙常见矿物质充填,充填物多为方解石、黄铁矿及粘土矿物等。方解石多呈脉状充填,黄铁矿呈莓状或结核状,有时黄铁矿分布于方解石脉中,形成混合状填充。
3.3 煤层含气量及赋存规律
3#煤层甲烷含量在寿阳勘探区介于5.05~27.15m3/t,平均为11.99m3/t,主要集中在8~12m3/t范围内;15#煤层甲烷含量介于4.6~27.48m3/t,平均12.00m3/t。煤层解吸气成分以CH4为主,一般为70.63%~99.87%;其次为N2和CO2,N2浓度为0~27.47%,平均4.90%,CO2为0~3.00%,平均1.62%;个别样品有C2出现。
煤层含气量的平面分布特征与煤层埋藏深度变化相关,总体表现为自北向南随着埋藏深度的增加,含气量增大。该区埋深为300m 以浅的煤层,含气量一般小于10.00m3/t;在300~600m 埋深线之间,含气量为9~12m3/t;600~1000m 埋深线之间,含气量变化为12~16m3/t;1000~1400m 埋深线间,含气量为16~22m3/t;1400~1800m 埋深线附近,含气量为22~26m3/t;至最南部的煤层1800~2000m 埋深线附近,含气量最大可达26m3/t[4]。
3.4 煤储层等温吸附性能及含气饱和度
煤的吸附性能决定着煤层气的储集能力和产出过程,通常用吸附常数和等温吸附曲线来描述,含气饱和度是指在一定的储层压力、温度条件下煤层气的吸附饱和程度[5]。研究区内施工的10口煤层气井均进行了等温吸附试验,试验结果表明:寿阳地区煤的吸附能力较高,3号煤原煤的饱和吸附量(VL)为 24.04~37.65m3/t,平均 28.29m3/t;Langmuir压力(PL)为1.69~2.98MPa,平均2.41MPa。15号煤原煤的饱和吸附量(VL)为31.55~34.93m3/t,平均 33.31m3/t;Langmuir 压力(PL)为 1.79~2.74MPa,平均2.31MPa。
从SY-XX井的等温吸附曲线(图2)可见,在0~8MPa区间内,随压力增高,吸附增量变化比较明显,其中以0~3MPa间变化最显著,平均吸附增量为6.42m3/t.MPa;3~8MPa间的平均吸附增量为1.66m3/t.MPa;8~11MPa间的平均吸附增量为0.69m3/t.MPa;11~15MPa间仅为0.42m3/t.MPa。这说明煤层气井在排水降压过程中的产气高峰期应该是3MPa至煤层排采废弃压力之间,含气饱和度总体偏低。

图2 SY—XX井3号煤层原煤等温吸附曲线

3.5 煤的渗透性
研究区有8口煤层气参数井和生产试验井16层煤进行了注入/压降测试,取得了较多的煤层渗透率数据,总体来讲,煤储层的渗透性相对较好,介于0.0352~82.84mD,取得的煤层渗透率相差在几至几十倍以上,这也从一个侧面说明了煤层的非均质性[6]。
4 煤层气的富集机制
4.1 煤的热演化史和埋藏史是煤层气富集的主要控制因素
大量资料表明,该区煤层气的富集主要受控于该区煤的热演化史和埋藏史[7],沁水煤田石炭纪、二叠纪时期,该区处于台型稳定均衡沉降阶段,沉降速率22.82m/Ma。至三叠纪,地壳沉降速度加快,最大沉降速率达65m/Ma,侏罗纪仅有短暂的微弱沉降,总体以褶皱抬升为主。根据现有资料估算,三叠纪末,该区下煤组埋藏深度约3400m左右,地温达154℃左右,煤化程度为肥、焦、瘦煤阶段,处于生气高峰期,平均生气速率为0.8978×108m3/km2·Ma,白垩纪变慢为0.018×108m3/km2·Ma,白垩纪之后,生气作用基本终止。由于研究区处于纬度34°带,在区域变质的背景上,叠加了岩浆热变质作用。因此,该区生气强度大,阳泉、寿阳、昔阳一带,生气强度一般90×108m3/km2以上。综上所述,研究区于成煤期后,曾有两次大的热演化阶段,一次为印支期,主要是快速沉降堆积增温阶段。这一阶段使石炭纪、二叠纪煤层煤化作用加强,煤级增高,区内大部分区段的煤层都跨越了生气“门槛”值,进入主要生气阶段(R°max>1.0%),大部分地区的煤层达到生气高峰期(R°max=>1.35%),因此,印支期是煤层气主要生成期。另一次为燕山期,主要为岩浆区域热增温阶段。
4.2 煤层埋深对煤层气富集的影响
一般来讲,随着煤层埋深的增加,含气量增加。表现在平面上由北往南含气量增加,而在钻孔中,下组煤含气量高于上组煤。该区的煤层气风化带深度在300m,即在300m以浅,煤层气成分中甲烷含量一般小于80%。
4.3 煤层顶、底板封闭程度对含气量的影响
研究表明:煤储层的顶底板岩性和封盖性能对含气量的影响很大,顶底板岩性致密、封盖性能好的区域,含气量高,否则相反,在平面上含气量低的区域和煤层顶板砂岩带基本上是重合的。
4.4 水文地质条件对含气量的影响
煤系地层水在煤层气的生成、储集(吸附)和产出的全过程中都起着重要的作用。在控制煤层气赋存、产出的主要地质因素(含气量、临界解吸压力、储层压力、渗透率、内外生裂隙等)中,煤层水作为客观载体通过与诸多因素的相互作用实现对煤层气赋存、产出能力的影响[7]。煤岩储层压力表现为煤层水压力,而常规砂岩储层压力则表现为气体压力。因此,煤层水压力的高低反映了煤岩储层能量的大小。煤岩对甲烷分子的吸附能力主要与温度和压力在煤层水压力作用下,埋深变浅的煤层仍保持了较高的原始含气量,煤岩储层中“圈闭”了一定数量的气体,形成煤层气藏[8]。
在研究区,主煤层高含气量区域与地下水等水位线的局部低洼地带较吻合。如韩庄井田主煤层含气量在研究区内是最高的地带,对比之下,该地带中奥陶统、太原组、山西组含水层的等水位线均呈现出低洼状态,地下水明显滞流是导致韩庄井田主煤层含气量高的重要原因。
上述规律得到了地下水矿化度、水质类型等分布规律的进一步佐证。韩庄井田一带存在着中奥陶统灰岩含水层高矿化度中心,矿化度在2000mg/L 以上:太原组含水层中,这一地带矿化度最高,在1500mg/L 以上;在山西组含水层中,这一地带矿化度最高,在1000mg/L 以上。这一高矿化度区带与主煤层高含气量地带在空间分布上高度一致的规律,进一步揭示出地下水缓流或滞流对煤层气保存富集的重要作用[2]。
需要指出的是,沁水盆地北端煤层气的富集,是以上诸因素综合作用的结果,只有多种因素的有效配置,才能形成富集的煤层气藏,在进行选区评价和勘探部署时,一定要全面考虑可能影响含气量的各种因素。
5 勘探中存在的问题及对策
从1997年中国煤田地质总局施工HG1号煤层气探井揭开该区的煤层气勘探序幕至今已有10年的里程,目前可以说取得了阶段性进展,但客观地讲,该区勘探开发的进程缓慢,究其原因,除和近年来煤层气产业发展的大气候有关外,还和对该区的地质规律认识水平以及采取的煤层气完井方式及工艺有一定的关系。
1996~1997年由中国煤田地质总局施工的4口井均布置在韩庄精查区内,由于韩庄精查勘探就是由煤炭队伍完成的,对地质资料的占有和研究程度都很高,因此在井位选择上非常成功,煤层厚度、含气量等主要参数都非常乐观,特别是生产试验井HG6井压裂后,单井排采最大日产气量达到1300m3,现在回过头看,该井应该是比较成功的,但限于当时对煤层气理论的认识水平和工程技术的局限,如钻井过程中对储层污染的重视不够,排采中没建立合理的排采制度造成煤层吐砂、埋泵等事故。中联公司施工的1号探井由于选在煤田勘探空白区内,加上由于地层涌、漏水等原因,并未达到预期目的,而3口井的小井组由于受当时勘探思路的影响选择在构造高点,加上对该区的水文地质条件研究不够,正好打在了富水区内,在排采过程中由于裂隙水补给充分,液面长期稳定,加上当时其他因素,最后不得不终止作业。
水平井技术是最近几年在美国、加拿大、澳大利亚等国家兴起的一项有效的煤层气增产技术,远东公司在分析总结了该区以往地质和勘探资料的基础上,决定实施羽状水平井以期取得突破,从完成的3口井的情况看是比较成功的,但由于羽状水平井作业成本高,因此在实施之前对综合地质的研究,包括煤层的机械物理性能、可钻性、水文地质特征等非常重要,同时对井眼轨迹区构造的控制(如实施三维地震勘探等)也非常重要。此外,由于涉及多个工种,煤层气羽状水平井的施工也是一个系统工程,有效科学的组织管理将会事半功倍。
6 结论
沁水盆地北端煤储层厚度大,埋深适中;煤的热演化程度较高,已进入生气高峰,煤层顶底板封闭性能好,含气量高;煤储层裂隙较发育,孔隙以小孔和微孔为主,渗透性较好;煤的吸附性能强,但含气饱和度偏低。总体来讲,该地区煤层气开发条件良好。
煤层气的富集受诸多地质条件的控制,是各种因素有效配置的结果,在这些地质因素中,煤的热演化史和埋藏史起着主导作用。其他因素如顶、底板的封盖性能、水文地质条件、埋深等也都影响着气的富集,在选区和勘探部署时要综合考虑各种因素。在增产措施的选择上,建议采用传统垂直井压裂和羽状水平井并用的方针,同时尝试近年来效果好的清洁压裂液、氮气泡沫压裂等先进的工艺和技术。
参考文献
[1]李明宅.2000.沁水盆地煤层气勘探及地质分析.天然气工业,20(4):24~26
[2]傅雪海,王爱国,陈锁忠等.2005.寿阳—阳泉煤矿区控气水文地质条件分析.天然气工业,25(1):33~36
[3]王明寿,朱峰,宋儒.2002.山西煤层气产业面临的机遇与挑战.21世纪中国煤层气产业发展与展望.北京:煤炭工业出版杜,278~279
[4]郡兵印,徐文军.1997.阳泉矿区煤层气赋存特征和开发前景.中国煤层气,(2):18~21
[5]孙茂远,黄盛初等.1998.煤层气开发利用手册.北京:煤炭工业出版杜,63~67
[6]王生维,段连秀,张明等.2000.煤层气藏的不均一性与煤层气勘探开发.石油实验地质,22(4):368~370
[7]李侠,魏永佩,纪邦师等.2002.山西煤盆地热演化与生气作用研究.西安工程学院学报,20(2):27~30
[8]周志成,王念喜,段春生等.1999.煤层水在煤层气勘探开发中的作用.天然气工业,19(4):23~25

徐凤银 刘 琳 曾雯婷 董玉珊 李延祥 周晓红
(中石油煤层气有限责任公司,北京 100028)
摘 要:“清洁化、低碳化” 是全球趋势。加快煤层气勘探开发步伐,对减少煤矿瓦斯事故、保护大气 环境、改善能源结构、保障能源安全具有重要战略意义。中国对煤层气开发力度不断加大,出台了价格优惠、 税收优惠、开发补贴、资源管理、矿权保护等一系列鼓励政策,形成中石油、晋煤集团、中联煤三大煤层气 企业,但目前产业整体规模较小。针对矿权问题,形成3种促进采煤采气协调发展的合作模式。即:沁南模 式、潞安模式和三交模式。在技术上已初步形成适合不同煤阶和不同地质条件下煤层气的勘探开发配套技术,建成了高水平的煤层气实验室,并在800m以深地区、低阶煤储层的开发等领域有实质性突破。
到2010年底,全国共钻煤层气井5426口,探明煤层气地质储量2900多亿立方米。累建产能超过30× 108m3/a,年产量15×108m3,商品气量11.8×108m3。建成管输、压缩/液化能力56×108m3/a。截至2011年 6月,全国煤层气日产量超过400×104m3。已建或在建了较完善的煤层气管网。沁南、韩城、大宁-吉县及 保德四个有利区都紧邻已有天然气主干管线。
中国煤层气资源丰富,潜力大、前景好,加大研发力度,依靠技术进步,特别建议加强四个方面的工作: 一是根据资源分布研究与调整对策;二是国家政策落实和企业间的相互合作须进一步加强;三是在提高单井 产量和整体效益方面强化技术攻关;四是建立统一的信息平台,避免无序竞争和重复性投资。这将会大大促 进煤层气产业快速发展。
关键词:中国;煤层气;开发;产业;技术;现状;前景
Exploration & Development Status and Prospects For China's Coal Bed Methane
Xu Fengyin,Liu Lin,Zeng Wenting,DongYushan,Li Yanxiang,Zhou Xiaohong
(PetroChina CBM Co.,Ltd,Beijing 100028,China)
Abstract:A global trend of "Clean and low-carbon" has been formed.To speed up CBM exploration and development is of significant importance to reduce coal mine gas accidents,to protect atmospheric environment and to improve energy structure.Greater efforts have been exerted to CBM development,given a series of encouraging policies,i.e.favourable price,tax preferences,development subsidy,resource management and mineral right protection.Three major CBM enterprises emerged including PetroChina,JAMG,and CUCBM,while the current industrial scale is relatively small.Considering the exploration right issues,3 cooperation modes are developed to promote the coordinated development of gas extraction and coal mining such as Qinnan mode,Lu'an mode and Sanjiao mode.Regarding technologies,a couple of exploration and development technologies are developed,tailored for various rank coal methane and for different geological conditions,and a high-profile CBM lab was built.Besides,some substantial breakthroughs have been made in exploring CBM buried deeper than 800m and in low-rank coal bed methane development.
By the end of year 2010,5,426 CBM wells have been drilled,about 290 bcm of the geological reserves proved.An annual production capacity of over 3 bcm were accumulatively built for surface extraction,producing 1.5 bcm/a,with 1.18 bcm of commercial production and 5.6 bcm/a for pipeline transportation,CNG and LNG capacity.The nationwide CBM yield has exceeded 4 million cubic meters per day by June,2011.Four favorable blocks,like Qinnan,Hancheng,Daning-jixian and Baode all get close to the major existing pipelines.
China is rich in CBM resources,with great potentials and promising prospects.Thus,the following four suggestions are proposed:to work out proposals based on resource distribution;to further coordinate governmental policies and entrepreneur performance;to strive to make technological breakthroughs in increasing single well yield and in promoting integrated economic efficiency;to establish a unified information platform to avoid disorderly competition and repeated investment.All these four proposals are likely to stimulate the progress of CBM industry.
Key words:China;CBM;development;industry;technology;status;prospects
引言
煤层气俗称瓦斯,成分主要是甲烷,形成于煤化过程中,主要有吸附在煤孔隙表面、分布在煤孔隙 及裂隙、溶解在煤层水中三种赋存形式,以吸附状态为主。当煤层生烃量增大或外界温度、压力条件改 变时,三种赋存形式可以相互转化。“清洁化、低碳化” 是全球趋势,能源转型和低碳经济已成为世界 各国经济社会发展的重要战略。
煤层气开发利用具有“一举三得” 的优越性。首先它是一种清洁、高效、安全的新型能源,燃烧 几乎不产生任何废气,有利于优化能源结构,弥补能源短缺;再者,瓦斯是煤矿安全“第一杀手”,它 的开发有利于煤矿安全生产,减少煤矿瓦斯事故;同时它也是一种强烈温室效应气体,温室效应是CO2 的20倍,开发煤层气可以有效减少温室效应。总体体现出经济、安全和环保三大效益。加快煤层气勘 探开发步伐,对减少煤矿瓦斯事故、保护大气环境、改善能源结构、保障能源安全具有重要战略意义。煤层气的开采方式分为井下抽采与地面抽采两种方式。地面抽采在钻完井、测录井、压裂、排采、集输 工艺上与常规油气开采技术基本相同。
1 世界煤层气资源及产业现状
1.1 资源分布
全世界埋深小于2000m的煤层气资源量约为260×1012m3,主要分布在俄罗斯、加拿大、中国、美 国、澳大利亚等国家(图1)。

图1 全世界煤层气资源分布情况

1.2 产业现状
目前,美国、加拿大、澳大利亚等 国家煤层气产业发展趋于成熟。美国自 20世纪80年代以来,有14个含煤盆地 投入煤层气勘探开发,现已探明可采储 量3×1012m3。2009年,煤层气生产井 5万余口,产量542×108m3。煤层气产 量占天然气总产量比重日益增大,2009 年煤层气产量比例达到9%。加拿大煤 层气产业发展迅猛。1987年开始勘探,2002年规模开发,2009年生产井7700 口,产量达60×108m3。澳大利亚也已 形成工业规模。主要分布在东部悉尼、苏拉特、鲍恩三个含煤盆地,2005年生产井数1300口,产量 12×108m3,2009年产量达48×108m3。
1.3 技术现状
通过长期的理论与技术研发,目前国际上形成4大主体技术,4项工程技术。4大主体技术包括: 地质选区理论和高产富集区预测技术,煤层气储层评价技术,空气钻井、裸眼洞穴完井技术,多分支水 平井钻井技术。
4项工程技术包括:连续油管钻井、小型氮气储层改造技术,短半径钻井和U形水平井技术,注氮 气、二氧化碳置换煤层气增产技术,采煤采气一体化技术。
2 中国煤层气产业现状
2.1 勘探开发现状
受美国、加拿大、澳大利亚等国家煤层气快速发展的影响,加之国家出台一系列优惠政策,中国煤 层气开发规模和企业迅速发展,已形成中国石油、晋煤集团、中联煤三大主要煤层气生产企业。
到2010年底,全国共钻煤层气井5426口,探明煤层气地质储量2900多亿立方米。累建产能超过 30×108m3/年,地面抽采实现年产量15×108m3,商品气量11.8×108m3。建成管输、压缩/液化能力 56×108m3/a。截至2011年6月,全国煤层气日产量超过400×104m3。
中国石油:2010年12月,商务部等四部委宣布为进一步扩大煤层气开采对外合作,新增中国石 油、中国石化以及河南省煤层气公司三家企业作为第一批试点单位。目前中国石油登记煤层气资源超过 3×1012m3,探明地质储量占全国64%,重点分布在沁水、鄂东两大煤层气盆地。近几年来,积极开展 煤层气前期评价、勘探选区及开发先导试验,投资力度大幅度增加,发现沁水、鄂东两大千亿立方米规 模以上煤层气田,逐步形成沁南、渭北、临汾与吕梁四个区块的开发格局。截止到2010年底,商品气 量近4×108m3。
通过几年的探索,与煤炭企业和地方政府合作,形成3种促进采煤采气协调发展的合作模式。即: 沁南模式:矿权重叠区协议划分,分别开发,双方开展下游合作;潞安模式:整体规划、分步实施,共 同维护开采秩序,避免重复性投资;三交模式:先采气、后采煤,共同开发。这些模式得到张德江副总 理和国家有关部委的肯定。
已建或在建了较完善的煤层气管网。沁南、韩城、大宁-吉县及保德四个有利区都紧邻已有天然气 主干管线(图2)。
建成了高水平的煤层气实验室,测试样品涵盖全国绝大多数煤层气勘探开发区,工作量占全国 80%,技术水平居国内领先。
主要实验技术包括:含气量测试技术,等温吸附测试技术,煤储层物性分析技术,煤层压裂伤害测 试技术等。
晋煤集团:到2010年底,完成钻井2510口,地面抽采产量达到9×108m3。建成寺河-晋城10× 108m3/a输气管线;参股建成晋城-博爱输气管线。与香港港华共同投资组建煤层气液化项目日液化量 可达25×104m3;投产120兆瓦煤层气发电厂。开发地区涉及山西沁水、阳泉、寿阳、西山,甘肃宁 县,河南焦作等。
中联煤并中海油:中联煤目前有矿权面积2×104km2,其中对外合作区块面积达1.6×104km2。截 至2010年底,在沁水盆地潘河建成国家沁南高技术产业化示范工程,以及端氏国家油气战略选区示范 工程。
目前完成钻井672口,投产230口,日产气50×104m3。2010年,中海油通过收购中联煤50%股 份,成功介入煤层气勘探开发,为发展煤层气产业打下了基础。

图2 中国石油天然气主干管网示意图

阜新煤业:阜新煤炭矿业集团与辽河石油勘探局合作,开展了三种煤层气合作开采模式,显著提高 了整体开发效益。三种开发模式包括:未采区短半径水力喷射钻井见到实效;动采区应用地面负压抽采 技术,实现了煤气联动开采;采空区穿越钻井取得成功。2010年已钻井52口,日产气10×104m3,商 品气量3226×104m3,建成CNG站3座,主要供盘锦、阜新市CNG加气站。
中石化:煤层气矿权区主要为沁水盆地北部和顺区块及鄂东延川南区块。2010年完成钻井34口,产气84×104m3,目前日产气近3000m3。2010年,华东局与淮南矿业签署了 “煤层气研究开发合作意 向书”,在淮南潘谢矿区优选出100km2有利区块,共同开发煤层气资源。2011年,与澳大利亚太平洋 公司在北京签署了一项框架协议,双方确立了非约束性关键商务条款。
其他:龙门、格瑞克、远东能源及亚美大陆等合资公司及其它民企纷纷介入煤层气勘探开发,加大 产能建设规模,其中亚美大陆目前日产气19.7×104m3。
总体来看,沁水盆地南部成为我国煤层气开发的热点,共建产能近25×108m3/a,目前日产气近 380×104m3,实现大规模管网外输和规模化商业运营,初步形成产运销上下游一体化的产业格局。
2.2 政府优惠政策与技术支持
为了鼓励煤层气产业发展,中国政府出台了一系列优惠政策,包括价格优惠、税收优惠、开发补 贴、资源管理及矿权保护等等(表1),取得了明显效果。
表1 中国政府鼓励煤层气产业发展的优惠政策


与此同时,在技术层面也给予了强有力的支持。2007年以来,国家发改委专门组建了煤层气开发 利用、煤矿瓦斯治理两个国家工程研究中心,科技部设立了 “大型油气田及煤层气开发” 国家科技重 大专项。中国石油成立了专业煤层气公司,并设立“煤层气勘探开发关键技术与示范工程” 重大科技 专项。这些都为煤层气产业发展与技术进步创造了条件。
2.3 技术现状
我国的地质条件和美国等有所区别。目前,煤层气开发都源于美国最早的理论。随着规模化深入开 发,现场实验了很多不同类型煤阶和煤体结构、构造条件、水文地质条件下的煤层气储存特点。已经证 明,这套理论是否完全适合中国煤层气地质条件还有待进一步证实。针对中国不同盆地地质条件研发的 不同的勘探开发技术,有些已经取得了突破性进展。
2.3.1 地质上有新认识
有利区评价方法有新突破:通过煤岩特征、含气量、渗透率、产气量等地质综合研究,建立起富集 高产区评价标准,提出了产能建设区开发单元的划分标准和方法。
800m以深煤层气井产量有突破:一般认为,随着煤层埋深的增加压力随之增大,渗透率急剧减小、 产气量也随之减少。目前国内商业开发深度都在800m以浅地区。随着勘探开发的深入推进,800m以 深井也获得了工业气流(最高产气量2885m3/d)(图3),但煤层产气规律尚不清楚,正在通过加强研 究及大井组排采试验得以证实。

图3 800m以深井排采曲线

煤储层渗透率普遍较低,储层保护是关键:煤储存条件的研究是煤层气开发关键的制约因素。沁水 盆地3#煤渗透率(0.013~0.43)×10-3μm2,平均0.112×10-3μm2;鄂东(0.22~12)×10-3μm2,平均1×10-3μm2。总体来看,煤层物性差、非均质性强,因此,钻井过程中加强储层保护是关键。钻 井、压裂过程中应尽量采用对井筒周围煤储层的危害小的欠平衡钻井及低伤害压裂液。
2.3.2 现场管理有新措施
高煤阶开发井网井距有新探索。由于我国高煤阶煤层气储层物性与外国有较大差异,开发证实一直 沿用的300m×300m井距不完全适合,主要表现在高产井数少,达产率低,产量结构不合理。为此,通 过精细地质研究,以提高单井产量为目标,对不同井距产气效果数值模拟并进行先导试验,探索了高煤 阶煤层气开发的200m×200m井网和井距。与此同时,在水平井的下倾部位实施助排井也初见成效。
2.3.3 工程技术配套有新进展
三维地震勘探:韩城地区实施100km2三维地震,资料品质明显好于二维,小断层的刻画更加清晰(图4),有效地指导了井网部署。

图4 韩城地区三维与二维剖面对比

羽状水平井钻井:通过市场化运作,打破了 外国公司在羽状水平井施工领域的垄断地位,摆 脱了羽状水平井钻井完全依赖外国公司的局面,成本大幅度降低。
压裂配套工艺:在对煤层实验分析的基础 上,结合大量的压裂实践,形成以 “变排量、低 伤害” 为原则,“高压井处理技术、分层压裂技 术” 等新工艺,采用低密度支撑剂、封上压下、 一趟管柱分压两层等工艺技术。
排采技术:形成缓慢、稳定、长期、连续八 字原则;为培养高产井形成三个关键环节:液面 控制、套压控制、煤粉控制;针对低成本战略,形成井口排采设备的两种组合:电动机+抽油 机,气动机+抽油机。
地面集输处理:标准化设计、模块化建设、 自动化管理,基本实现低成本高效运营。
2.4 利用现状
2009年全国建成6家煤层气液化厂,液化产能260×104m3/d,2010年为300×104m3/d,2020年 可达到700×104m3/d。除此之外,还主要用于低浓度瓦斯发电,居民生活,合成氨、甲醛、甲醇、炭 黑等化工原料,已逐步建立起煤层气和煤矿瓦斯开发利用产业体系。
2.5 存在问题
技术上:技术是制约目前产业进展缓慢的主要问题。目前存在的主要问题包括:煤层气高渗富集区 的控气因素,符合我国煤层气地质条件、用以指导生产实践的开发理论,适合我国地质条件的完井、压 裂、排采等关键技术与相应设备等。
管理上:主要包括:煤层气、煤炭矿权重叠,先采气、后采煤、发电上网等政策实施困难较多,对 外合作依赖程度高,自营项目受到限制,管道规模小,市场分散、不确定性大等。
3 煤层气发展前景与建议
随着国民经济的发展,天然气需求快速增长为煤层气发展提供了机会。2000年以来,天然气年均 增长速度达到16%(图5),2009年底,全国天然气消费总量875×108m3,2010年,天然气需求量超 过1400×108m3,供应能力约1000×108m3。2015年,预计天然气需求量2600×108m3,供应能力只有 1600×108m3,到2020年,天然气缺口将超过1000×108m3,这就为煤层气等非常规气的发展提供了 空间。
3.1 发展前景
据有关规划,到2015年,全国地面开发煤层气产量将达到100×108m3;2020年,天然气产量约 2020×108m3,其中非常规天然气产量达到620×108m3,地面开发煤层气将达到200×108m3。

图5 2000~2008年中国天然气消费量变化趋势

与此同时,各相关企业也制定了 “十二五” 发展目标(表2)。
表2 全国重点地区及企业煤层气地面开发预测表


上述目标能否顺利实现,前景如何,勘探开发及产业规模能否迅速发展,主要取决于国家政策的进 一步落实以及几大主要企业的投入。尤为重要的是这些企业针对煤层气赋存条件的技术进步与突破,而 非资金问题,这一点必须引起高度重视。中国石油将会进一步加大投入,促进煤层气产业快速发展。主 要加大沁水盆地南部和鄂尔多斯盆地东部两个重点产业基地的勘探开发力度,积极探索外围盆地煤层气 开发配套技术。预计:2012年新增探明煤层气地质储量2000×108m3,为建产能提供资源保障;2013 年建成生产能力45×108m3/年,2015年产量达到45×108m3,商品量40×108m3,成为国内第一煤层气 生产企业。同时,成为业务技术主导者、规范标准制定者、行业发展领跑者。到2020年,煤层气商品 量预计达到100×108m3,成为中国石油主营业务重要组成部分和战略经济增长点。
3.2 对策与建议
3.2.1 根据资源分布研究与调整对策
全国埋深小于2000m的煤层气总资源量为36.8×1012m3,可采资源量约10.8×1012m3。资源量大 于1×1012m3盆地有8个,资源量合计28×1012m3,占全国76%,主要分布于中西部地区。埋藏深度小 于1000m的资源量为14×1012m3,是目前开发的主要资源。低阶煤煤层气资源量占43%,但目前主要 开发的是中高阶煤煤层气资源。因此,现在必须加强对西部地区中深层(埋深大于800m)和中低阶煤 煤层气开发的研究与开发试验力度,力求更大范围的实质性突破。
3.2.2 国家政策落实和企业间的相互合作须进一步加强
完善相关政策措施,制定煤层气、煤炭开发统一规划,做到无缝衔接,切实落实“先采气、后采 煤”,实现资源充分利用。采煤采气3种合作方式还需要进一步扩展;积极推进煤层气产业发展与煤矿 瓦斯防治一体化合作。
3.2.3 在提高单井产量和整体效益方面强化技术攻关
针对煤层气勘探开发关键技术需要加强攻关。进一步研发针对煤层气地质特点而形成配套合适的钻 探、压裂、排采、管输等专有设施和设备,加大发展羽状水平井开发关键技术力度。
3.2.4 建立统一的信息平台,避免无序竞争和重复性投资
强化信息渠道,实现资源共享,避免无序竞争和重复性投资。建立煤层气行业统一的信息管理系统 是一项非常重要的基础工作。包括两方面内涵:企业内部应加强煤层气田的数字化建设,国家层面应加 强行业技术与产业信息的统计和交流发布,为煤层气行业提供统一的信息化建设标准。
结束语
低碳经济是我国能源经济发展的必由之路。为了从源头上减少碳排放,引领能源结构和产业多元 化,天然气供需缺口将长期存在,对煤层气需求会不断增加。中国煤层气资源丰富,目前产业整体规模 小,但潜力大、前景好。加大研发力度,依靠技术进步,将大大促进煤层气产业快速发展。
参考文献
[1]徐凤银等.煤层气勘探开发的理论与技术发展方向[J].中国石油勘探,2008,(5)
[2]宋岩等.煤层气成藏机制及经济开发理论基础[M].北京:科学出版社,2005
[3]李景明等.中国煤层气资源特点及开发对策[J].天然气工业,2009,(4)
[4]郭炳政.韩城区块煤层气勘探开发现状与启示,2006年煤层气学术研讨会论文集[C].北京:地质出版社
[5]赵庆波等.煤层气地质选区评价理论与勘探技术[M].北京:石油工业出版社,2009
[6]陈振宏等.煤粉产出对高煤阶煤层气井产能的影响及其控制[J].煤炭学报,2009,(34)2
[7]孙茂远.煤层气资源开发利用的若干问题[J].中国煤炭,2005,(3)
[8]刘洪林,李景明,宁宁,李贵中.我国煤层气勘探开发现状、前景及产业化发展建议[J].天然气技术,2007,(04)
[9]鲜保安,崔思华,蓝海峰,李安启.中国煤层气开发关键技术及综合利用[J].天然气工业,2004,(05)
[10]叶建平.中国煤层气勘探开发进展综述[J].地质通报,2006,(Z2)
[11]崔荣国.国内外煤层气开发利用现状[J].国土资源情报,2005,(11)
[12]秦勇,程爱国.中国煤层气勘探开发的进展与趋势[J].中国煤田地质,2007,(1)
[13]彭贤强,张宝生,储王涛,刘玲莉.中国煤层气开发综合效益评价[J].天然气工业,2008,(3)
[14]李五忠,田文广,孙斌,王宪花,赵玉红.低煤阶煤层气成藏特点与勘探开发技术[J].天然气工业,2008,(3)
[15]严绪朝,郝鸿毅.国外煤层气的开发利用状况及其技术水平[J].石油科技论坛,2007,(6)
[16]翟光明,何文渊.抓住机遇,加快中国煤层气产业的发展[J].天然气工业,2008,(3)
[17]Working Document of the NPC Global Oil &Gas Study.Topic Paper#29 Unconventional GAS.July 18,2007.
[18]司光耀,蔡武,张强国内外煤层气利用现状及前景展望[J].中国煤层气,2009,(6)
[19]Facing the Hard Truths about Energy[R].Washington,D.C:National Petroleum Council,2007.
[20]侯玉品,张永利,章梦涛.超短半径水平井开采煤层气的探讨[J].矿山机械,2005,(6)
[21]严绪朝,郝鸿毅.国外煤层气的开发利用状况及其技术水平[J].石油科技论坛,2006,(6)
[22]刘贻军.应用新技术促进煤层气的开发[J].地质通报,2007,(26)

相关要点总结:

15513959876:中国煤层气产业发展现状与技术对策
惠别答:摘要:本文通过分析我国煤层气发展历程和现状,总结了我国从上世纪80年代以来煤层气发展经历了“前期评价、勘探选区、开发试验、规模开发”四个阶段。在分析我国煤层气地质条件基础上,认为已发现的煤层气田(富集区)煤层普遍演化程度高、渗透率低;总结了适合我国复杂地质条件的煤层气配套开发技术,包括钻井完井、储层保护、...

15513959876:煤层气的开发管理
惠别答:《国务院办公厅关于加快煤层气(煤矿瓦斯)抽采利用的若干意见》(国办发[2006]47号)、《财政部、国家税务总局关于加快煤层气抽采有关税收政策问题的通知》(财税[2007]16号),规定了国家对煤层气开发的扶持政策。主要规定:对煤层气抽采利用实行税收优惠政策;对地面直接从事煤层气勘查开采的企业,2020年...

15513959876:煤层气藏形成条件
惠别答:因此,煤层气富集成藏的基本地质条件受很多因素控制。下面从西北地区煤层气形成的地质背景出发,探讨西北地区煤层气藏形成条件。 1.煤层发育与煤层气形成 煤层气资源的丰富程度与煤系地层的分布、煤层厚度、煤层稳定性及煤层结构关系密切。一定厚度的煤层是煤层气藏形成的基础;煤层厚度越大且稳定性越好就越有利于煤层气...

15513959876:煤层气钻井
惠别答:我国的煤层气地面勘探开发经过十余年的实践,已取得了重大突破。其中具代表性、实现小规模商业性煤层气地面开发的项目有:山西沁水枣园井组煤层气开发试验项目,辽宁阜新刘家井组煤层气开发项目,山西晋城潘庄煤层气地面开发项目,山西沁南煤层气开发利用高技术产业化示范工程——潘河先导性试验项目,山西省沁水县端氏煤层气开...

15513959876:煤层气地面开发技术
惠别答:逐步探索适合我国煤层气勘探开发的工艺技术。1.中低煤阶高渗区空气钻井裸眼/洞穴完井开采煤层气技术 低煤阶区煤层渗透率一般大于5×10-3μm2,中煤阶高渗区煤层渗透率也能大于5×10-3μm2。对于此类高渗煤层的煤层气开采,不需压裂改造(低煤阶煤层机械强度低,压裂易形成大量煤粉堵塞割理),可对...

15513959876:国外煤层气勘探开发现状的启示
惠别答:美国的经验证实,煤层气勘探开发一旦取得突破,形成规模生产,可获得明显的经济效益,主要反映在以下几个方面:一是勘探费用低,获利大,风险小;二是生产成本低,生产期长;三是煤层气井经济效益好。更为重要的是,煤层气资源的勘探和开发对缓减我国能源紧缺局面、煤矿安全问题和环境污染问题意义重大,具有...

15513959876:韩城区块煤层气勘探开发现状与启示
惠别答:与沁水盆地相比,韩城地区的煤层地质条件另具特色,而煤层的渗透率、含气量等关键性煤层气生产参数也有着不同的特点。本文根据中联煤层气有限责任公司在韩城地区实施煤层气勘探工作以来取得的成果,结合已有的煤田勘探资料,分析了韩城地区煤层气地质条件的特点,并初步探讨了韩城地区开发煤层气应着力解决的问题。 关键词 ...

15513959876:(一)煤层气矿产地质特征
惠别答:通过对煤层气藏和油气藏成藏机理的分析,可以看出两种矿藏有着明显的差异,因而勘探开发矿藏的方式也不相同。不能认为同在一个沉积盆地,可以用一种勘探开发方案兼探兼开,也不大可能用同一口钻井同采煤层气藏和常规油气藏。地下巷道采煤或是巷道中的煤层气采收和地面钻采煤层气的探采方法更是两种截然不同的工艺。不...

15513959876:煤层气地质评价
惠别答:这6个因素的相互作用和匹配决定了煤层气的可开发性。综合地质评价实际上就是以6个因素及其相互关系的研究为主要内容,同时兼顾其他因素。因此综合地质评价大体可从以下两方面进行。 7.1.1.1 地质背景 通过已有的生产、科研资料和初步的野外及室内工作,了解煤层气赋存的区域和局部地质背景,是煤层气综合地质评价的基础工作...

15513959876:中国石油煤层气勘探开发实践及发展战略
惠别答:作者简介:费安琦,男,1946年生,满族,1965年毕业于中国地质大学,主要从事石油、天然气及煤层气勘探开发方面的研究和管理工作。 摘要 根据中国石油天然气股份有限公司煤层气十年勘探经验,系统总结了中国石油在煤层气勘探领域的新认识和新技术,利用这些认识和技术取得了重要勘探成果,发现了三个气田,储备了一大批有利目标区...

(编辑:本站网友)
相关推荐
关于我们 | 客户服务 | 服务条款 | 联系我们 | 免责声明 | 网站地图
@ 百韵网