百韵网 >>  正文

煤层气成藏条件、开采特征及开发适用技术分析 (二)沁水盆地煤层气成藏条件分析

来源:www.baiyundou.net   日期:较早时间

赵庆波 孙粉锦 李五忠 李贵中 孙斌 王勃 孙钦平 陈刚 孔祥文

作者简介:赵庆波,1950年生,教授级高级工程师,中国石油天然气集团公司高级技术专家,中国地质大学(武汉)兼职教授;中国石油学会煤层气学组副组长;主要从事煤层气勘探开发工作,编写专著17部,发表学术论文50余篇。地址:河北省廊坊市万庄44号信箱煤层气所。电话:(010)69213108。E-mail:zhqib@petrochi-na.com.cn

(中国石油勘探开发研究院廊坊分院 廊坊 065007)

摘要:煤层气成藏模式可划分为自生自储吸附型、自生自储游离型、内生外储型;煤层气成藏期可划分为早期成藏、后期构造改造成藏和开采中二次成藏,特别指出了开采中二次成藏的条件。利用沉积相分析厚煤层的层内微旋回,细划分出优质煤层富含气段;进一步利用沉积相探索成煤母质类型及其对煤层气高产富集控制作用;阐述了构造应力场及水动力对煤层气成藏的作用机理。总结了煤层气开采特征:指出了煤层气井开采中的阻碍、畅通、欠饱和三个开采阶段,并认为欠饱和阶段可划分为多个阶梯状递减阶段;由构造部位和层内非均质性的差异形成自给型、外输型和输入型三类开采特征。根据地质条件分析了二维地震AVO、定向羽状水平井、超短半径水力喷射、U型井、V型井钻井技术的适用性及国内应用效果。

关键词:煤层气 成藏模式 成煤母质 高产富集 开采特征 适用技术

Coalbed Methane Accumulation Conditions, Production Characteristics and Applicable Technology Analysis

ZHAO Qingbo SUN Fenjin LI Wuzhong LI Guizhong SUN Bin WANG Bo SUN Qinping CHEN Gang KONG Xiangwen

(Reserch Institute of Petroleum Exploration and Development, PetroChina, Langfang Branch, Langfang 065007 China)

Abstract: Accumulation model of coalbed methane can be divided into three types: authigenic reservoir with adsorbed gas, authigenic reservoir with free gas and authigenic source rock with external reservoir. Three accumu- lation stages are indicated as early stage accumulation,late stage accumulation with tectonic reworking and second- ary accumulation during development. Conditions for secondary accumulation during development are specially in- dicated. Micro-cycle in thick coal are analyzed using sedimentary facies. Coalbed interval with high gas content is classified, and further more, coal-forming sources type and its controling on coalbed methane productive and en- richment is explored. Mechanism of tectonic stess field and hydrodynamic force on coalbed methane accumulation is elaborated. Production characteristics of coalbed methane wells is concluded as follows: blocked,unblocked and unsaturated production stages are indicated, and unsaturated stage is considered to be divided into several deple- tion stages; structure localization and inner layer heterogeneity result in three production characteristics-self-sup- porting, exporting and importing types. According to geological setting,the applicability and its effect of 2 dimen- tional seismic AVO (Amplitude versus Offset), pinnate horizontal multilateral well, ultrashort radius hyraulic jet- ting, U and V type well drilling technique is analyzed.

Keywords: Coalbed methane; accumulation model; coal-forming sources; productive and enrichment; pro- duction characteristics; applicable technology

1 煤层气成藏条件分析

1.1 煤层气成藏模式和成藏期

1.1.1 煤层气成藏模式划分为三类

自生自储吸附型:煤层气大部分以吸附态存在于煤层中,构造相对稳定的斜坡带富集。如沁水盆地南部潘庄水平井单井平均日产气3万m3;郑试60井3#煤埋深1337m,日产气2000m3

自生自储游离型:煤层吸附气与游离气多少是相对的,多为同源共生互动,煤层气一部分以游离态存在于煤层中,有的局部构造高点占主体,早期煤层埋藏深、生气量高,后期抬升煤层变浅压实弱,次生割理发育渗透性好,两翼又是烃类供给指向,在有利封盖层条件下局部高点形成高渗透的高产富集区。准噶尔盆地彩南地区彩504井,构造发育的断块高点煤层次生割理裂隙发育物性好,游离气与吸附气同源共储,煤层深2575m,日产气6500m3

内生外储型:煤层作为烃源岩,生成的气体向上部或围岩运移,在有利的圈闭条件下在砂岩、灰岩中形成游离气藏,使吸附气、游离气具有同源共生性、伴生性、转换性和叠置性,可在平面上叠加成大面积分布。鄂尔多斯盆地东缘韩城地区WL2~015井山西组煤层顶板砂岩厚14.1m,压裂后井口压力为2.32MPa,日产气2400m3

图1 煤层气成藏模式图

1.1.2 煤层气成藏期划分为三类

早期成藏:随着沉积作用的进行,煤层埋深逐渐增加,大量气体持续生成。充分的生气环境,良好的运聚势能,足够的吸附作用,有利的可封闭、高饱和、高渗透成藏条件,为早期成藏奠定了基础。这类气藏δ13C1相对重(表1),表现为原生气藏特征。

构造改造后期成藏:系统的动平衡一旦被构造断裂活动打破,即煤层气藏将被水打开,煤层割理被方解石脉充填,则能量将再调整、烃类再分配,古煤层气藏遭受破坏,新的高产富集区块开始形成(图2)。

受构造抬升后在局部出现断裂背斜构造,抬升使煤层压力降低,气体发生解吸,构造运动产生的裂隙又沟通了低部位的气体,使之向局部构造高点运移聚集。当盆地沉降接受沉积时,压力逐渐增大,再次生气,背斜翼部气体再吸附聚集,这类气藏多为次生型,δ13C1相对轻(表1)。

表1 不同类型气藏CH4含量及δ13C1分布表

图2 煤层气运聚成藏过程

开采中二次成藏:煤层气原始状态为吸附态,开采中压力降至临界点后打破原平衡状态转变为游离态,气水将重新分配,解吸气窜层或窜位,从而形成煤层气开采中的二次成藏,这是常规油气不具备的条件。煤矿区这类气藏由于邻近采空区CH4含量较低。

(1)煤层气二次成藏中的窜位

窜位是指煤层气开采中气向高处或高渗区运移,水向低部位运移,形成煤粉、气、水三相流,再开发几年进入残余态,微小孔隙、深部气大量产出。煤层气开采过程中,在同一地区,有些井高产,有些井低产,这与他们所处的构造部位有关,解吸气向构造顶部或高渗通道差异流向或“游离成藏”,煤层气发生窜位,使得高点气大水少,甚至后期自喷,向斜水大气少。如蒲池背斜煤层气的开发实例(图3,表2)。

该地区早期整体排水降压单相流,中期气、水、煤粉三相流,后期低部位降压,高部位自喷高产气井单相流,4年后基本保持现状。区块中477口直井和57口水平井已开采4年多,目前产气不产水直井、水平井分别为29%、11%,产水不产气分别为12%、19%。

(2)煤层气二次成藏中的窜层

窜层是指煤层气开采中或煤层采空区上部塌陷中解吸气沿断层裂隙或后期开发中形成的通道等向上再聚集到其他层位。主要有五种情况:(1)原断层早期是封闭的,压力下降到临界点后是开启的;(2)水平井穿透顶底板和断层;(3)压裂压开顶底板;(4)开采应力释放产生裂缝使解吸气穿透顶底板进入砂岩、灰岩形成游离气;(5)煤层采空后顶板坍塌应力释放,底部出现裂隙带。

典型实例分析:

(1)阜新煤矿区开采应力释放导致二次成藏

采动、采空区:阜新钻井7口,采空区坍塌后在煤层顶部砂岩裂隙带单井日产气1.5万~2.15万m3,CH4含量大于50%。生产1年,单井累计产气折纯最高260万m3;阳泉年产气7.16亿m3,90%是邻层抽采;铁法70%煤层气是采动区采出(图4)。

图3 蒲池背斜煤层气开发特征图

表2 蒲池背斜开发井开采情况

注:日产气及日产水两栏中分子为四年前产量,分母为目前产量。

图4 采动、采空区煤层气开采示意图

(2)直井压裂窜层

蒲南3~8井压裂显示超低破裂压力,为9.6MPa,低于邻井10MPa以上,初期日产水62m3,4年后目前为54.8m3,累计产气仅有3.8万m3

(3)水平井窜层

FZP03~1井煤层进尺4084m,钻遇率81%,主、分支共钻遇断层4条,明显钻入下部水层,开发效果差(图5):最高间歇日产气1366m3,累计产气29万m3,累计产水4.3万m3,目前日产气392m3,日产水28m3;原水层的构造高点被解吸气占据。而比该井浅75m的FZP03-3井日产气3783m3,日产水5m3

在煤层气的勘探开发中应形成一次开发井网找煤层吸附气,二次开发井网找生产中由于开采中压力下降,烃类由吸附态变游离态使气水重新分配,打破原始平衡状态,解吸气窜层或窜位形成二次成藏的游离气藏的勘探开发思路。

1.2 有利的成煤环境和煤层气高产富集旋回段

以往油气勘探上用沉积相分析砂体变化特征,通过对大量煤层粘土矿物分析、植物鉴定、测井特征,特别是全煤层取心观察,以及煤质和含气性分析认为:沉积环境对煤层气的生成、储集、保存和渗透性能的影响是通过控制储层物质组成来实现的,层内的非均质性和煤质的微旋回性受控于沉积环境,并控制层内含气性和渗透性的非均质变化。

平面上:河间湾相煤层厚、煤质好、含气量高、单井产量高,河边高地和湖洼潟湖相相反(表3)。

图5 FZP03-1、FZP03-3水平井轨迹示意图

表3 鄂东气田C—P不同煤岩相带煤质与产量数据表

纵向上:受沉积环境影响,厚煤层往往纵向上形成夹矸、暗煤、亮煤几个沉积旋回,亮煤镜质组含量高、渗透率高、含气量高。不同的煤岩组分受成煤母质类型的控制,高等植物丰富,经凝胶化作用形成的亮煤,灰分低、镜质组高、割理发育、含气量高;碎屑物质、水溶解离子携入或草本成煤环境的暗煤相反。

武试1井9#煤可划分为4个层内微旋回(图6)。灰分含量:暗煤14%~15%,亮煤3.7%~5.1%;镜质组含量:暗煤23%~49%,亮煤66%~79%。

1.3 构造应力场对煤层气成藏的控制作用

古应力场高值区断裂发育,水动力活跃,煤层矿化严重,含气量低;低值区则煤层割理发育,处于承压水封闭环境,煤层气保存条件好,含气量高。局部构造高点也往往是应力场相对低值区,并且煤层渗透率高、单井产量高,煤层气保存条件好,煤层没被水洗刷,含气量高。

1.4 热演化作用对煤层气孔隙结构的控制作用

高煤阶以小于0.01μm的微孔和0.01~1μm中孔为主,一般在80%以上,中、微孔是煤层气主要吸附空间,靠次生割理、裂隙疏通运移;

图6 武试1井9#煤沉积旋回图

图7 高、低煤阶孔隙结构特征

低煤阶以>1μm大孔和中孔为主,演化程度低,裂隙不发育,大孔是吸附气、游离气主要储集空间和扩散、渗流和产出通道;

中煤阶以中、大孔为主,中、大孔是煤层气扩散、渗流通道。

核磁共振:煤层气藏储层的T2弛豫时间谱,为特征的双峰结构,与常规低渗透储层T2弛豫时间谱相对照,煤层气储层的两个峰之间有明显的间隔,这说明对于煤层气储层,束缚水与可动流体并不能有效沟通。然而不同煤阶煤储层T2谱的结构不同,这源于不同的孔隙结构(图7、图8),低煤阶以大孔为主、高煤阶以微孔小孔为主,高煤阶曲线峰值煤层左峰高右峰低,峰值中间零值,低煤阶相反,左峰为不可流动孔隙,右峰为可流动的次生割理裂隙储集体;高煤阶右峰可流动峰值越高(割理发育),气井产量越高(图9)。

1.5 水动力场对煤层气藏的控制作用

局部构造高点滞留水区低产水高产气,向斜承压区高产水。地下水一般在斜坡沟谷活跃,符合水往低处流、气向高处运移的机理。樊庄区块滞流—弱径流区域多为>2500m3/d高产井;东部地下水补给区含气量<10m3/t、含气饱和度55%,见气慢,单井产量200~500m3/d(图10)。

2 煤层气开采特征

对于中国中低渗透性煤层,煤层气井一般为300m×300m井距,单井产量稳产期4~6年,水平井更短,开采中划分为上升期、稳产期、递减期三个阶段,递减期又可划分为多个阶梯状递减阶段。

2.1 构造部位和层内非均质性的差异形成三类开采特征

自给型:往往位于构造平缓、均质性强的地区。气产量为本井降压半径之内解吸的气从本井产出。排采井一般处于构造平缓部位,层内均质性强。日产气上升—稳产—递减三个阶段,这类井多低产(图11)。

图8 不同煤阶孔隙分布特征图

图9 不同煤阶煤储层T2弛豫时间谱

图10 樊庄区块地下水与含气量、煤层气高产区关系图

图11 煤层气单井开采特征图

外输型:位于构造翼部、非均质性强的地区。气产量一部分通过本井降压解吸半径内从本井产出,而大部分通过高渗通道或沿上倾部位扩散到其他井内产出。排采井一般处于构造翼部、非均质性强。日产气低产或不产—上升—缓慢递减,这类井多低产,并且产量递减快。

蒲池背斜的P1-11、PN1-1、PN2-5、HP1-10、HP2-11-3井位于背斜的翼部,属于构造的相对低部位,基本上没有气产出,而产水量较大,分析由于降压而解吸出来的气体向构造高部位运移而没有产出,具有输出型的开采特征。

输入型:多位于构造高点。初期本井降压解吸气随降压漏斗从本井产出,后期构造下倾部位解吸气又运移到本井产出。排采井处于构造高点,这类井一般高产、稳产期长。日产气上升—稳产—上升—递减。

蒲池背斜中位于构造高点的PN1-4、P1-3、PN2-7、P1-5井产气量高而产水量低,这与低部位气体的扩散输入有关,具有典型的输入型开采特征。

2.2 降压速率不同形成三类开采效果

2.2.1 畅通型解吸

抽排液面控制合理,降压速率接近解吸速率,有效应力引起的负效应小于基质收缩引起的正效应,渗透率随开采的束缚水、气产出上升—稳定,气泡带出部分束缚水,产量理想(图12-Ⅰ)。以固X-1井为例,该井排采制度合理,经半年的排水降压后液面基本保持稳定,日产气稳定在4320m3/d以上,目前还保持稳产高产。

图12 不同措施煤层气井产气影响特征曲线

2.2.2 超临界型解吸

解吸速率小于降压速率,降压液面下降速度太快,煤层裂缝、割理产生应力闭合,日产气急剧上升—急剧下降,渗透率下降—稳定,产气效果差(图12-Ⅱ)。以固Y-2井为例,该井经30余天的排水降压,液面降至煤层以下,由于抽排速度过快,前期产气效果差,2010年7月二次压裂及排采制度调整后,气体日产气量最高达4000m3/d,后期稳定在1600m3/d以上;PzP03井在产气高峰期日降液面63~87m,造成该井初期是全国单井产量最高(10.5万)而目前是该区单井产量最低的井。

2.2.3 阻碍型解吸

降液速率过慢,解吸速率大于降压速率,有效应力引起的负效应大于基质收缩的正效应,气泡变形解吸困难,降压早期受煤粉堵塞,液面阻力作用解吸不畅通,日产气不稳定,开发效果差(图12-Ⅲ)。FzP03-3井开采770天关井26次以上,开发效果很差。

2.3 煤层水类型及其开采特征

煤层水可划分为层内水、层间水和外源水;高产气区为层内、层间水,有外源水区为低产气区。

(1)层内水:煤层割理、裂隙中的水。日产水小,开采中后期高部位几乎不产,低部位递减。层内水又可进一步划分为可动水(洞缝)、吸附水(煤粒面)、湿存水(<10-5cm毛管内)、结晶水(碳酸钙)四类。

(2)层间水:薄夹层水渗入煤层。开采中产水量明显递减,可控制。

有层间水的气井连续降压可控制水产量,提高开发效果。沁水樊庄FzP11-1井煤层总进尺4710m。2009年4月投产,最高日产水175m3,目前日产气21436m3,日产水20.7m3,套压0.15MPa,液面4m,累计产水3.7万m3,累计采气814万m3。可以看出,对有层间水进入煤层气井的情况,短期加大排水量,后期日产气持续上升,开发效果较好。

(3)外源水:断层或裂缝沟通高渗奥灰水及其他水层。产水大,难控制。

3 煤层气勘探开发适用技术分析

3.1 地震AVO技术预测高产富集区

煤层与围岩波阻抗差大,煤层本身是强反射。其内含气、含水的差异在局部异常突出:高含气后振幅随偏移距增大而减少产生AVO异常(亮点),这与常规天然气高阻抗振幅随偏移距增大而增大出现的亮点概念不同,具有以下特征:高产井强AVO异常(高含气量低含水),煤层段为大截距、大梯度异常,即亮点中的强点;低产井弱AVO异常(低含气量高含水)为低含气、低饱和、低渗透特征。

煤层气高产区强AVO异常区的吉试1井5#煤含气量21m3/t,日产气2847m3(图13);低产区弱AVO异常的吉试4井5#煤含气量12m3,日产气64m3,产水90m3。据此理论,可用地震AVO技术预测高产富集区。

图13 吉试1井5#煤AVO特征图

3.2 定向羽状水平井钻井适用地质条件

全国已钻定向羽状水平井160余口,单井最高日产气10.5万m3。定向羽状水平井技术适合于开采较低渗透储层的煤层气,集钻井、完井与增产措施于一体,能够最大限度地沟通煤层中的天然裂缝系统,使同一个地区单井产量可提高5~10倍,适用地质条件有以下10点:

(1)构造稳定无较大断层:FzP03-1钻遇4条断层,日产气最高1366m3,目前687m3,日产水32~75m3;韩城04、07、09井日产水20~48m3,日产气小于60m3

(2)远离水层封盖条件好:三交顶板泥岩厚<2m,水大气少,SJ6-1井9#煤厚9.4m,顶板6.8m灰岩,煤层进尺4137m,钻遇率100%,最高日产水465m3,19个月产水4.6万m3,不产气。

(3)软煤构造煤不发育:韩城、和顺12口井单井平均日产气720m3

(4)煤层埋深小于1000m:煤层深800~1000m的武m1-1、Fz15-1井日产气<500m3

(5)煤厚>5m:柳林CL-3井煤层厚4m,最高日产气0.95万m3,稳产160天递减,日产气2807m3,累计121万m3

(6)含气量>15m3/t:潘庄东部8m3/t(盖层厚2~5m),北部15~22m3/t(盖层厚>10m),尽管东部比北部浅100~200m,而北部6口井单井平均日产气3.0万m3,东部7口为1869m3,最高3697m3,相距6km单井产量差20倍。

(7)主分支平行煤层或上倾:单井平均日产气、阶段累计和地层下降1MPa采气效果分析,水平井轨迹:平行煤层产状最好,其次上倾,下倾差;“凸”“凹”型最差。

(8)煤层有效进尺>3000m:水平段煤层进尺<2000m的单井最高日产气<800m3,阶段累计采气<2.0万m3

(9)分支展布合理:主支长1000m左右,分支间距200~300m,夹角10°~20°。

(10)煤层有效钻遇率>85%:10口井煤层钻遇率<85%,并投产1年以上,单井平均日产气800m3,最高<2000m3,阶段平均累计采气27万m3

3.3 超短半径水力喷射钻井适用条件

我国利用该技术已钻煤层气井23口以上,效果均不理想。主要原因为低渗透,喷孔直径小、弯曲大,前喷后堵;水力喷射开窗直径28mm,孔径小,排采中易被煤粉和水堵塞。可进行旋转式大口径喷咀和裸眼喷射试验。

3.4 “山”型井、U型井、V型井钻井适用条件

由于中国煤层气藏具有低渗透的特点,且多属断块气藏,U型水平井沟通煤层面积小,应用效果较差。我国钻U型水平井16口以上,增产效果不明显。

SJ12-1井分段压裂日产气稳产1750m3,累计产气19.1万m3,开采3个半月后已递减。水平段下油管、玻璃钢管都取得成功,低渗透气藏效果差。较高渗透区[(1.0~3.6)×10-3μm2]效果好:彬长、寺河单井日产气0.56万~1.4万m3

今后可进行1口水平井穿多个直井的“山”字型井组试验,目前国外利用该技术开发盐岩已成功。

4 结论

(1)根据中国煤层气勘探开发实践认识将煤层气成藏模式划分为自生自储吸附型、自生自储游离型、内生外储型三类;同时,认为煤层气成藏期划分早期成藏、后期构造改造成藏和开采中二次成藏三类,开采中二次成藏将是煤层气开发二次井网的主要产量接替领域。

(2)利用沉积相分析厚煤层、优质煤层和高产富集区;分析厚煤层的层内微旋回,成煤母质控制煤岩组分和单井产量,高等植物丰富,经凝胶化作用形成的亮煤,灰分低、镜质组高、割理发育、含气量高,是高产富集段;碎屑物质、水溶解离子携入或草本成煤环境的暗煤相反。

(3)古应力场低值区则煤层割理发育,处于承压水封闭环境,煤层气保存条件好,含气量高;滞留水区低产水高产气,向斜承压区高产水。

(4)由构造部位和层内非均质性的差异形成自给型、外输型和输入型三类开采特征,由降压速率不同形成畅通型、阻碍型和超临界型三类开采效果。

(5)高产井强AVO异常,即亮点中的强点;低产井弱AVO异常,为低含气、低饱和、低渗透特征。定向羽状水平井在适用的地质条件和钻井方式下才能取得较好的开发效果;超短半径水力喷射应首选渗透率较高、煤层构造相对稳定、含气量和饱和度较高煤层应用;U型、V型水平井钻井技术在低渗透气藏中效果差,高渗透区效果好。

参考文献

陈刚,赵庆波,李五忠等.2009.大宁—吉县地区地应力场对高渗区的控制[J].中国煤层气,6(3):15~20

陈振宏,贾承造,宋岩等.2007.构造抬升对高、低煤阶煤层气藏储集层物性的影响[J].石油勘探与开发,34(4):461~464

陈振宏,王一兵,杨焦生等.2009.影响煤层气井产量的关键因素分析——以沁水盆地南部樊庄区块为例[J].石油学报,30(3):409~412

邓泽,康永尚,刘洪林等.2009.开发过程中煤储层渗透率动态变化特征[J].煤炭学报,34(7):947~951

康永尚,邓泽,刘洪林.2008.我国煤层气井排采工作制度探讨[J].天然气地球科学,19(3):423~426

李金海,苏现波,林晓英等.2009.煤层气井排采速率与产能的关系[J].煤炭学报,34(3):376~380

乔磊,申瑞臣,黄洪春等.2007.煤层气多分支水平井钻井工艺研究[J].石油学报,28(3):112~115

鲜保安,高德利,李安启等.2005.煤层气定向羽状水平井开采机理与应用分析[J].天然气工业,25(1):114~117

赵庆波,陈刚,李贵中.2009.中国煤层气富集高产规律、开采特点及勘探开发适用技术[J].天然气工业,29(9):13~19

赵庆波,李贵中,孙粉锦等.2009.煤层气地质选区评价理论与勘探技术[M].北京:石油工业出版社

Diessel C F K. 1992. Coal-bearing depositional systems-coal facies and depositional environments.Springer-verlag. 19~22



(二)沁水盆地煤层气成藏条件分析~

沁水盆地宏观煤岩类型,太原组15煤和山西组2、3煤以光亮、半亮煤为主,半暗、暗淡煤次之。煤岩显微组分以镜质组为主,含量68.2%~93.3%,并以无结构镜质体和基质镜质体为主。镜质组和半镜质组平均含量太原组略高于山西组,太原组15煤为80.4%,山西组2、3煤为78.14%,余为丝质组。无机物矿物成分以粘土矿物为主,少量碳酸盐岩与硫化物。煤岩灰分太原组15煤为1.5%~25%,山西组2、3煤为3.6%~15.9%,属中低灰煤。霍西、潞安原煤灰分为10%左右,属低—中灰煤,盆地北部和南部20%左右,多为中—高灰煤。原煤硫分太原组大于1%,为中、高硫煤,山西组小于1%,为低硫煤。煤岩水分0.83%~2.26%,西山、霍山、潞安1%左右,阳泉大于1%,晋城大于2%。煤岩挥发分由于煤种复杂变化亦较大,为4.33%~32.84%,西部煤变质程度低,挥发分相对较高,为20%~30%,东部变质程度高,挥发分较低,潞安小于15%,阳泉10%左右,晋城5%~7%。纵向上挥发分随埋深而降低。整个盆地挥发分变化,西部交城至古县以西挥发分大于20%,霍山以西洪洞、万安达40.41%,是盆地内煤岩变质程度最低的地区。东部左权至子长挥发分大于15%,为高变质烟煤区,盆地腹部挥发分小于15%,为高变质烟煤、无烟煤区。盆地南部晋城挥发分5%~7%,属Ⅱ号无烟煤,是全盆地煤变质程度最高地区。
沁水盆地煤岩变质程度较高,太原组和山西组含煤地层除西山和盆地中部的东西两侧狭窄地带为肥、焦、瘦煤外,绝大部分地区为贫煤和无烟煤,Ro,max为1.9%~4.35%。太原组无烟煤分布面积较山西组大,主要分布于盆地南北两端,山西组无烟煤分布面积较小,仅分布在盆地北部阳泉和南部晋城、阳城一带。石炭、二叠系含煤地层其上覆二叠、三叠系地层厚2000~3000 m,以此推算三叠纪末Ro,max为0.57%~1.04%,应属气、肥煤阶,但整个盆地煤岩变质程度高达贫煤、无烟煤煤阶。燕山期构造运动强烈,太原以西和临汾至侯马有二长斑岩、闪长岩出露,昔阳一带有玄武岩出露,物探显示太谷—平遥间有闪长岩侵入体,盆地北部和南部正磁异常推测亦为侵入体,由此推断盆地深部有侵入体岩基存在,隐伏岩体埋深北部2500~3000 m,南部500~1500 m,花岗岩体与喷溢玄武岩为燕山期与喜马拉雅期,形成区域性地热异常区,在较高地热场背景下受区域性岩浆热变质叠加作用,除盆地中部和东西两侧煤阶较低外,盆地北部、南部以及整个盆地含煤地层变质程度相对较高。
沁水盆地太原组、山西组含煤地层有效孔隙度为1.15%~7.69%,一般小于5%。资料表明,煤岩孔隙度随煤岩变质程度增高呈现两头高中间低,肥煤、焦煤孔隙度最低,瘦煤以后有所增高。不同变质程度煤孔隙大小、孔隙体积有所不同,中变质煤大、中孔发育,高变质煤过渡孔较多,各煤种微孔均较发育。
沁水盆地煤岩煤体结构类型较多,阳泉、晋城3、15煤变质程度高,煤体结构基本为原生结构,其中3煤底部1m厚的软煤层为粒状、鳞片状结构。西山、潞安2、8煤和3煤多为原生—碎裂结构,潞安3煤亦有碎粒、糜棱结构。
沁水盆地煤岩裂隙一般为两组,即主裂隙与次裂隙,两组正交或斜交相伴而生,并与煤层层理面垂直或斜交。西山主裂隙走向35°~70°,次裂隙走向310°~345°,潞安主裂隙走向280°~340°,次裂隙走向27°~60°,阳泉有两组裂隙,晋城有三个裂隙系统。宏观观测煤岩裂隙密度与间距,阳泉大型裂隙密度2.7条/m,间距37 cm;中型裂隙密度33条/m,间距3.0 cm;小型裂隙密度200条/m,间距0.5 cm;微型裂隙密度500条/m,间距0.2 cm。晋城除大型裂隙外,密度均低于阳泉,间距均高于阳泉。西山3煤和8煤大、中型裂隙密度分别为15条/m和7.5条/m,间距为6.7~13.3 cm。潞安3煤大、中型裂隙密度为9条/m,间距11.1 cm。微观观测微小裂隙密度,西山裂隙密度2.0~10.2条/cm,间距1~7.7 mm;潞安裂隙密度1.7~8.7条/cm,间距1.2~5.9 mm;阳泉裂隙平均密度3.5条/cm,平均间距2.8 mm;晋城裂隙平均密度2.1条/cm,平均间距4.7 mm。可见盆地内微小裂隙密度和间距变化都不大。西山、潞安主要煤层裂隙无矿物质充填,阳泉、晋城多有方解石或黄铁矿、粘土矿物充填。对煤层主、次裂隙发育特征研究可见,阳泉、潞安、晋城主裂隙为北西向,次裂隙为北东向,西山主要裂隙为北东向,次裂隙为北西向,说明裂隙的发育与区域应力场和局部应场的关系密切。不同煤质煤岩裂隙发育程度不同,太原组15煤的光亮煤成分比山西组3煤高,15煤裂隙较3煤发育,太原组煤层比山西组裂隙网络发育要好,其渗透性相对较好。
在隆起背景经变形改造形成的沁水盆地,受区域岩浆地热场影响,埋深较浅的含煤岩系变质程度却相对增高,但其内生裂隙发育程度并未变差。据盆地边部煤样光面统计,贫煤、无烟煤面割理密度为9~16条/5cm,端割理密度5~18条/5cm,以网状割理组合为主,孤立—网状和孤立状组合为次,开启性较好,偶见充填。割理密度随煤岩变质程度加深和煤岩类型变差而降低。统计表明,面割理走向与褶皱轴向大致垂直,端割理走向与褶皱轴近乎平行。
据煤炭统计资料,1966年至1990年沁水盆地煤矿发生煤层瓦斯突出3654次,最大瓦斯涌出量17640 m3/次,瓦斯抽放率11.34%~22.57%,平均吨煤瓦斯抽放量为3.32~8.02 m3/t,以此可以间接判断煤层含气量高低。通过煤层气评价研究认为,沁水盆地煤层含气量较高,为5~29 m3/t。盆地北部阳泉含气量6~25 m3/t,东部潞安8~12 m3/t,晋城8~29 m3/t,屯留4.60~17.68 m3/t。盆地南部阳城潘庄7口煤层气试验井,3煤含气量13 m3/t,15煤为18 m3/t;樊庄3煤含气量8~23 m3/t,均值12.3 m3/t;15煤含气量10~19 m3/t,均值11.3 m3/t。晋试1井含气量较高,达19.29~31.75 m3/t,均值25.1m3/t。
统计资料表明,煤层含气量与煤层埋藏深度相关,煤层含气量有随煤层埋深增大而增加的趋势,自盆边向盆地腹部含气量逐渐增大。煤层埋深小于300 m地带,含气量一般低于8.00 m3/t,晋城煤变质程度高,含气量为10~12 m3/t;煤层埋深300~600 m间,含气量为10~16 m3/t;在600~1000 m深度含气量为14~22 m3/t,至1500 m深度含气量达25 m3/t;盆地北部煤层埋深近2000 m,含气量最大可达30 m3/t。含气量变化梯度有由浅至深逐渐变小的趋势。
沁水盆地煤层含气量与煤岩变质程度相关,煤岩变质程度越高,含气量越高。屯留为瘦煤(Ro,max1.7%),寿阳韩庄为贫煤(Ro,max1.8%~2.4%),阳城为无烟煤(Ro,max4.1%)。煤层埋深均为500 m条件下,最高含气量屯留和韩庄为16.5~17 m3/t,阳城为38 m3/t。煤层埋深增加含气量增大,韩庄为贫煤(Ro,max1.8%~2.4%),煤层埋深510~620 m含气量为16.5 m3/t,埋深550~780 m含气量为17.7 m3/t,埋深620~920 m含气量为18.9 m3/t。潞安屯留3煤为瘦煤(Ro,max1.73%),阳城潘庄为无烟煤(Ro,max4.058%~4.134%),煤层含气量统计资料均表明,随煤层埋深增大含气量有随之增加的趋势。
煤岩吸附能力是评价研究煤层气藏的重要因素,煤岩等温吸附参数包括兰氏体积和兰氏压力。沁水盆地太原组15煤和山西组3煤,在平衡湿度条件下恒温30℃进行甲烷解吸测试,结果测试压力小于1.0 MPa时,两条曲线基本重合,而压力大于1.0 MPa时,15煤的等温吸附曲线位于上方较3煤陡,煤阶较高的15煤兰氏体积和兰氏压力明显高于3煤,说明15煤吸附能力较3煤强。在含气量相同时,3煤临界解吸压力高于15煤。其中3煤兰氏体积为33.43 m3/t.daf,兰氏压力为1.78 MPa,Ro,max为1.73%。15煤兰氏体积为40.91 m3/t.daf,兰氏压力为2.09 MPa,Ro,max为2.04%。西安煤炭研究分院对盆地12个样品测试说明,沁水盆地太原组、山西组主要煤层吸附能力相对比较高,原煤饱和吸附量为20.54~39.06 m3/t,平均29.81 m3/t;可燃质饱和吸附量为23.90~51.81 m3/t,平均36.58 m3/t;兰氏压力中等为1.93~3.43 MPa,平均2.62 MPa。测试结果表明,在等温条件下,吸附量与储层压力呈正相关,压力增高吸附量增大,在0~1 MPa区间吸附量随压力增高,斜率较高呈似直线,此后增长率逐渐变小,不同区间吸附量增长不等,直至吸附增量为零,煤岩吸附量达到饱和状态。在相同温度、压力条件下,随煤阶增高吸附量增大,在煤阶变化过程中,兰氏体积与兰氏压力呈互为消长趋势,即煤岩变质程度增高,兰氏体积增大而兰氏压力减少。在盆地的不同位置、不同煤层等温吸附曲线形态均有差异。一般为14.06~38.12 m3/t,均值 24.27 m3/t。盆地北部阳泉、东部潞安、南部晋城兰氏体积大,西部西山、古交、霍州兰氏体积较小。阳城北樊庄晋试1井测试兰氏体积为39.91~46.84 m3/t。兰氏压力值晋城、西山较高,阳泉、潞安次之,一般为0.9~2.249 MPa,均值2.03 MPa。晋试1井兰氏压力为3.034~3.184 MPa。一般情况兰氏体积大兰氏压力亦高。
沁水盆地煤岩等温吸附特征表明,山西组和太原组主要煤层的兰氏体积,瘦煤(Ro,max1.73%~1.80%)为26.27~33.43 cm3/g,贫煤(Ro,max2.04%)为40.91 cm3/g,无烟煤(Ro,max3.76%~3.90%)为46.66~49.16 cm3/g,呈现兰氏体积随煤阶升高而增加的趋势。主要煤层的兰氏压力,瘦煤1.38~1.78 MPa,贫煤2.09 MPa,无烟煤2.98~3.47 MPa,兰氏压力与煤阶亦为正相关。资料表明,贫煤、无烟煤的平衡湿度为6.14%~9.26%,明显高于瘦煤2.18%~3.45%平衡湿度。样品测试气体扩散速率为0.867074×10-4~0.236990×10-2l/s,表明沁水盆地煤层气扩散能力较强,有利于煤层气的产出。
煤层气含气饱和度是实测含气量与理论吸附量之比。沁水盆地勘探程度有限,现有资料反映出含气饱和度较高,接近饱和甚至过饱和状态。阳城潘庄潘1井3煤在井深322.7~328.2 m,实测含气量为22.58 m3/t,理论吸附量为21.05 m3/t,煤层含气饱和度为107%。CQ—9井3煤井深286.5~293.6 m,实测含气量21.54 m3/t,理论吸附量18.40 m3/t,含气饱和度117%;15煤井深380.9~383.4 m,实测含气量23.45 m3/t,理论吸附量24.32 m3/t,含气饱和度96%。晋试1井测试资料反映含气饱和度较高,3煤埋深522.10 m,兰氏体积39.91 m3/t,兰氏压力3.034 MPa,储层压力5.10 MPa,含气量23.80 m3/t,临界解吸压力4.48 MPa,含气饱和度为95.11%。15煤埋深606.10 m,兰氏体积46.843/t,兰氏压力3.184 MPa,储层压力6.017 MPa,含气量26.51 m3/t,临界解吸压力4.15 MPa,含气饱和度为86.28%。从测试资料统计测算,潞安长治3煤含气饱和度为87%,寿阳15煤含气饱和度为80%,阳城潘庄太原组煤层含气饱和度为中等至较高。从沁水盆地沉积构造发育来看,石炭、二叠系含煤岩系在印支末至燕山期隆升,亦是煤岩成煤、成烃转化期,喜马拉雅期仅在局部形成断陷,一般不存在煤层欠饱和的构造条件。但沁水盆地地下水径流活动,地下水与地表水交换活跃,可能是盆地内出现欠饱和的主要因素。
沁水盆地煤层渗透率较低,一般小于1×10-3μm2,面割理走向渗透率大于端割理走向方向。盆地南部煤层气井用试井方法测试的煤储层渗透率一般小于1×10-3μm2,最大3.16×10-3μm2,不同试井方法测值不同,DST测试结果一般偏低。潘2井、晋CQ—9井构造裂缝发育,储层渗透率变好。潘1井3、9、15煤用DST方法测试渗透率为(0.001~0.130)×10-3μm2,潘2井主煤层用注入压降试井方法测试渗透率为1.53×10-3μm2。屯留1井和2井均用DST方法测试3煤为(0.025~0.034)×10-3μm2,15煤为0.015×10-3μm2。晋CQ—9井用注入压降法试井3煤为3.16×10-3μm2,阳泉HG—6井7煤为(0.93~5.67)×10-3μm2,9煤为0.42×10-3μm2,15煤为(0.43~6.73)×10-3μm2。
煤储层压力参数是评价研究煤层气藏的重要依据。沁水盆地42口水文钻孔资料测算地层压力及压力梯度在垂向和横向上均有较大差异。阳城太原组深度200~450 m,地层压力1.97~3.72 MPa,压力梯度0.0083~0.0105 MPa/m;山西组深度117~350.26 m,地层压力1.13~2.95 MPa,压力梯度0.00841~0.00945 MPa/m。潞安、长治太原组深度624.36~677.50 m,地层压力4.16~4.53 MPa,压力梯度0.0062~0.0072 MPa/m;山西组深度212.06~577.80 m,地层压力1.54~3.27 MPa,压力梯度0.0057~0.0073 MPa/m。寿阳、阳泉太原组深度222.38~633.84 m,地层压力1.21~3.42 MPa,压力梯度0.0054~0.0057 MPa/m;山西组深度310~544.80 m,地层压力1.21~3.42 MPa,压力梯度0.0027~0.0047 MPa/m。盆地4口井3个层位测试结果,采用注入压降试井的晋CQ—9井,3煤井深289 m,地层压力2.31 MPa,压力梯度0.008 MPa/m;阳泉HG1井3煤井深512 m,地层压力3.99 MPa,压力梯度0.008 MPa/m;15煤井深627 m,地层压力5.93 MPa,压力梯度0.009 MPa/m。采用DST试井方法的阳城潘1、2井为3、9、15煤,井深为328、328和369 m,地层压力为3.28、3.88和3.43MPa,压力梯度为0.010、0.012和0.009MPa/m。以上资料表明,上二叠统上石盒子组地层是区域性正常—微超压层,地层压力梯度为0.01 MPa/m左右,钻井钻进常有涌水,水头可达数米之高。自上石盒子组至中奥陶统马家沟组,地层压力逐渐增高,压力梯度逐渐减小。地层压力在盆地不同部位有所差异,盆地南部阳城压力近于正常,盆地东部潞安长治,盆地北部寿阳、阳泉,山西组、太原组和奥陶系灰岩地层压力梯度较低,地层欠压严重。沁参1井山西组煤层测试资料表明,盆地中部地层属微欠压或近于正常压力。沁水盆地为印支期后形成的构造盆地,沉积岩层经变形改造后形成复式向斜,不同含水层均以向斜构型形成水动力系统,达到总体的平衡。由于盆地构造部位不同,受挽近构造运动改造程度不同,以及大型复式向斜自身的复杂性,造成盆地内地层压力的差异。地层欠压严重的寿阳、阳泉一带,已有资料证实与岩溶陷落有关。在阳泉已揭露陷落柱348个,西山达573个,局部地区陷落柱密度可达28个/km2。岩溶陷落柱多为椭圆形,直径小者10 m,大者200~500 m。
有效地应力与煤层渗透性密切相关,有效地应力为地应力与地层压力之差,地应力由构造应力和静岩压力构成,随地层埋深增加而增高,当地层压力保持不变时,有效地应力随之增高。有效地应力越高,煤层渗透率越低,有效地应力越低,煤层渗透率越高。对盆地勘探目标层位有效地应力的测定需随煤层气勘探程度提高而获取,就已有测试井获取的资料说明,测试区有效地应力相对较低,对煤层渗透性改善有利。HG1井太原组15煤煤层中部深627.31 m,最小原地水平主应力7.45 MPa,原始地层压力5.93 MPa,原始地层压力梯度0.0095 MPa/m,最小原地水平主应力梯度0.0119 MPa/m,最小原地有效地应力梯度0.0024 MPa/m。沁参1井山西组煤层中部井深1021.9 m,最小原地水平主应力15.5 MPa,原始地层压力9.635 MPa,原始地层压力梯度0.0094 MPa/m,最小原地水平主应力梯度0.0152 MPa/m,最小原地有效地应力梯度0.0057 MPa/m。
沁水盆地石炭、二叠系含煤岩系具有较好的封盖层,对煤层气成藏、保存较为有利。上石盒子组泥岩段厚度大,单层最大厚度60 m。下石盒子组泥岩单层厚度16~25 m,最厚37 m,累厚422.9 m,在全盆地发育稳定,是良好的区域性盖层。山西组泥岩累计厚度反映盆地中部以南泥岩较发育,沁参1井泥岩累厚90 m,盆地北部太原、阳泉一带变薄。山西组3煤之上泥岩在盆地北部、南部较厚,潘2井累厚25.4 m,盆地中部沁县为23 m,盆地南部和边缘较薄。太原组泥岩比较发育,盆地自西而东逐渐变厚,沁1井最厚为64 m。太原组15煤之上泥岩在盆地东部较稳定,沁1井最厚46 m。本溪组铝土岩在盆地分布广泛,南部厚4~5 m,北部厚1.5~6.3 m,中部较厚,最厚达13 m,是石炭系与奥陶系的良好隔水层。从主煤层顶底板封盖条件分析,15煤顶板厚2~16 m,盆地北部为泥岩,中部为砂岩,南部为灰岩,顶板之上为庙沟灰岩,可见封盖条件北部优于南部。3煤顶板岩性变化较大,厚2~6 m,为砂质泥岩、泥质粉砂岩和致密砂岩,封盖性较好,3煤底板是1~4 m厚泥岩,最厚14 m,分布稳定,是良好的封隔层。
沁水盆地为一沉积构造盆地,北北东向似椭圆形的盆地周围被下古生代老岩层所围限,盆地周缘高、中间低呈盆地地貌,四周为海拔1500~2000 m的中高山,盆地中部上古生界、中新生界地层组成低山、丘陵或平原,盆地中部自霍山东翼至昔阳为海拔1600~1800 m的分水岭。受盆地地势控制地表水系形成以汾河为主体的水系,地下水与地表径流供水和泄水组成统一的水动力系统。沁水盆地区域含水层可分三类,松散孔隙含水层、裂隙含水层和裂隙岩溶含水层。松散孔隙含水层为第三系、第四系砂砾石层。裂隙含水层为石炭、二叠系和三叠系砂岩、页岩裂隙含水层。裂隙岩溶含水层为太原组薄层灰岩和奥陶系灰岩。太原组和山西组煤层普遍含水,储水空间是煤层割理及外生裂隙,孔隙度在无应力状态测试<1%至4%,富水性很弱。
据盆地含水层特征与煤层关系分析,新生界疏散孔隙含水层底部粘土层隔水性好,与含煤岩系相隔较远,与煤层水力联系较小。三叠系裂隙含水层下伏石千峰组有约100 m泥质岩隔水层对煤层影响亦很小。上石盒子组砂岩裂隙含水层其下具多层较厚泥质岩,隔水性能良好,对煤层影响亦小。影响山西组煤层的是上、下围岩裂隙含水层,主煤层3煤顶板砂岩裂隙含水层位于煤层之上数米,至中部地区为直接顶板,由1~3层细—粗粒砂岩组成,厚6 m,最大23 m,富水性弱,盆地南部抽水试验涌水量0.0011 l/,盆地东部潞安部分钻孔一抽即干,说明3煤顶板砂岩裂隙含水对煤层水浸有限。裂隙含水层与煤层关系复杂,太原组15、13、11 煤层直接顶板为灰岩,岩溶不发育,裂隙不发育—较发育,多被方解石充填,富水性弱,对煤层影响不大,但寿阳钻井涌水量达8.102 l/,因此局部可能富水性强。奥陶系马家沟灰岩裂隙岩溶含水层,其水头标高高于15 煤底标高,寿阳、阳城都高于15煤标高,愈向盆地标高差愈大,奥陶系灰岩裂隙岩溶含水层与15煤底板相隔5~60 m,一般能起到隔水层作用,但当有裂隙通道时可能会连通。可见,煤层含水性弱,与围岩水力沟通程度取决于围岩的裂隙开启及岩溶发育程度。石炭、二叠系砂岩裂隙含水层富水性较弱,泥岩隔水层发育,对煤层气开发影响有限。奥陶系灰岩和石炭系太原组灰岩层局部富水性强,在断裂及岩溶陷落柱发育区对煤层有直接影响,对煤层气开发不利。
煤层气资源量是评价含煤盆地或煤层气藏资源前景的综合性量化参数,沁水盆地资源量测算以300~1000 m煤层埋深计算潜在资源量,1000~2000 m煤层埋深计算推测资源量。潜在资源量计算面积12700 km2,资源丰度(0.5~1.5)×108m3/km2,潜在资源量为(6375~19125)×108m3,均值12750×108m3。推测资源量煤层埋深1000~2000 m,含煤面积15400 km2(山西组与太原组面积之和),含气量23~26 m3/t,推测资源量(23299~26338)×108m3,均值25325×108m3;无烟煤面积4500 km2,含气量25~28 m3/t,推测资源量(14350~16072)×108m3,均值14925×108m3。沁水盆地煤层气总资源量(44024~61535)×108m3,均值53000×108m3。以此并综合煤层气地质条件,华北石油局对沁水盆地潞安长治、寿阳、阳城三个区块进行了综合评价并提出勘探开发建议。
西安煤炭研究分院对沁水盆地煤层气资源量亦进行测算,测算时删除200 m以浅甲烷风化带,将之下分为200~600 m,600~1000 m,1000~1500 m,>1500 m四段,可采煤层以大于0.6 m厚为限(阳泉>0.8 m)。计算结果:煤层气总资源量82032.91×108m3,总面积31911.62 km2,其中3煤17631.63×108m3,15煤30176.26×108m3。埋深200~600m,面积9297.28 km2,资源量15619.56×108m3;埋深600~1000 m,面积7515.39 km2,资源量18514.98×108m3;埋深1000~1500 m,面积8276.62 km2,资源量 25106.89×108m3;埋深>1500 m,面积6822.33 km2,资源量22791.47×108m3。
沁水盆地是由华北古生代克拉通盆地经后期构造运动改造、分割变形的中型含煤沉积构造盆地,改造后的盆地呈复式向斜样式保存较为完整,内部构造较为简单,含煤岩系分布较为稳定,煤层厚度较大,煤层埋深适中,煤炭资源丰富。盆地主要含煤岩层上石炭统太原组、下二叠统山西组,含煤11~20层,煤层厚5~17 m,山西组3煤和太原组15煤在盆地内部稳定,埋深300~1500 m主采煤层占含煤总面积一半。石炭、二叠系含煤岩系变质程度相对较高,煤岩吸附能力较强,含气量达8~25 m3/t,2000 m以浅的煤层气资源量达53000×108m3,资源丰度(0.5~1.5)×108m3,是煤层气资源较为丰富的含煤盆地。沁水盆地是处于隆升构造背景下早期沉积晚期成盆的含煤盆地,具有较高的区域地热场背景,含煤岩系变质程度较高,是制约煤层气可采性的不利条件,但从煤岩储集层综合分析还有诸多有利因素。沁水盆地含煤岩系煤层割理较发育,外生裂隙亦发育,等温吸附特征较好,兰氏体积高,兰氏压力亦高,含气饱和度中等—偏高,气体扩散速率高,对气体解吸有利,煤层压力较正常或偏高,有利于煤层渗透性的改善和储层流体产出动能的提高。地层有效地应力低,利于煤层渗透性变好。煤体结构多为原生结构,对钻井完井和煤层渗透性改善有利。太原组、山西组煤层顶、底板岩性多为泥质岩,对煤层封盖较为有利,盆地水动力条件亦有较有利的条件。综合各种因素总体评价沁水含煤盆地煤层气资源前景较好,开发煤层气条件较为有利。

一、煤层气赋存具有分带性特征
煤层气藏并非在原地、同期、一次形成,而是在含煤层系中经煤化作用不断生烃,又受上覆沉积、断裂构造和水动力作用不断改造后形成。进而形成了具有内在联系的几个带。依据煤层气δ13C1、非烃、甲烷含量和开采特点,由盆地边缘向盆地腹地一般可划分为4个带(表4-1):
(1)氧化散失带。靠近风化剥蚀面,地层水与大气淡水交替,煤层以含N2、CO2为主,甲烷多被散失,不能进行煤层气勘探。
(2)生物降解带。含煤层系局部受地表水网络状微渗滤的影响,加之适宜的温压条件,为细菌繁殖提供了良好的环境,在厌氧条件下,烃类产生分解,δ13C1表现为轻的特征。由于大气淡水与煤层水交替,使有的煤层气井开采中水大气少,不是煤层气有利勘探部位。
(3)饱和吸附带。盖层条件好,处于承压水封闭环境,含气量大,吸附饱和度高,煤层埋深适中,物性较好,气井单井产量高,是煤层气勘探的主要目标区。
(4)低解吸带。位于构造低部位下斜坡或向斜区,煤层埋藏深,在压实作用下煤储层物性差,尽管有的含气量大,但开采中可解吸率低,一般不作为勘探的重点区。
从以上可见,并非有煤均可勘探煤层气,往往一个盆地煤层气高产富集区仅分布于局部,其区带分布大小与地质因素有关。
二、煤层气藏类型多样
煤层气有多种成藏模式,根据中国煤层气勘探实践,对煤层气藏类型划分如下:
(1)压力封闭气藏。上覆较厚且分布稳定的泥页岩、膏盐岩作为盖层,煤层上倾方向或侧向上多为岩性尖灭或断层遮挡,由欠压实和蒙脱石脱水等作用形成高压地层,气态烃吸附量大,含气量高,含水性差。这类高压煤层气藏已见于鄂尔多斯盆地东部地区,如河东地区华威1井煤层压力系数约为1.17。
(2)承压水封堵气藏。常形成于宽缓向斜或斜坡中段,其断裂不甚发育,煤系地层上、下部存在良好的泥、页岩作为隔水层,特别是对于构造抬升盆地的高煤阶气藏,盆地早期下陷进入高热变质作用阶段,煤阶高生气量大;后期抬升松动,煤层物性变好,次生割理发育,下倾有充足气源供给,上倾部位形成承压水封堵。这类气藏后期没有被水打开,为原生气藏。沁水煤层气田处于气体运移的区域指向,而煤层由于上覆50m厚的泥岩盖层,封盖条件好,受北西—南东两个方向的侧向水封堵,在樊庄—潘庄一带为局部滞流水环境,形成构造变形差异聚集承压水封堵煤层气藏,水的总矿化度较高,气藏的δ13C1重,一般为-28‰~-30‰,具原始气藏特征。

表4-1 中国中高煤阶区煤层气成因分带特征表

(3)顶板水网络状微渗滤局部封闭气藏。煤层顶板泥岩较薄,横向稳定性差,或处于张性断层发育区,水体在含煤地层局部沿煤层割理、裂隙网络状微渗滤,水动力活动比较微弱,大部分地区对烃类起到一定封堵作用形成低丰度煤层气藏,气藏含气量和吸附饱和度低。此类煤层气藏开采中一般水大气少。
(4)构造圈闭气藏。构造圈闭的煤层气藏在目前的煤层气勘探开发中越来越受到重视,此类气藏一般位于构造的相对高部位,煤层气井高产,而且具有水小气大的特征,对于低煤阶而言,构造圈闭尤为重要,由于低煤阶煤层吸附能力差,游离气占比较大,构造圈闭有利于游离气的保存。
(5)矿化作用封闭气藏。成岩作用可使煤层顶、底板原为渗透层(砂岩),后期为封盖层(致密砂岩),只要与煤层生气高峰期匹配,对煤层气成藏有利,如果匹配不好则对煤层气成藏不利。
三、煤层气高产富集的基本条件
煤层气高产富集的基本条件受多种因素控制。以煤层气形成的地质背景为主线,结合国内外煤层气勘探实践,初步总结出煤层气高产富集因素主要有以下8个方面:
(一)煤层分布广、厚度大是煤层气富集的根本条件
煤层气资源的丰富程度与煤系地层的分布、厚度及含气量呈正相关关系,煤系地层这几项参数愈大,煤层气愈丰富。聚煤盆地(区)的煤层气丰富程度是评价其有无煤层气勘探价值的重要指标。一般认为,煤层连续分布面积大于200km2,煤层集中段煤层总厚度大于10m,平面上主煤层连续稳定分布,含气量大于10m3/t,甲烷含量大于80%,有利于进行工业性煤层气勘探。
(二)煤岩镜质组含量高、灰分含量低有利于煤层气生成、吸附和开采
煤的显微组分含量、灰分含量和演化程度(煤阶)不仅影响煤的生烃潜力,还影响着煤层对甲烷的吸附能力和煤层气的开采能力。据热模拟实验,类脂组产气能力最强,镜质组次之,惰质组最差。因煤的显微组分均以镜质组为主,一般情况下均大于50%,所以它是产气的最大贡献者,也是吸附甲烷的主要参与者;镜质组含量越高,煤层割理就越发育,渗透性越好,煤层气越易于开采。对不同煤阶来说,其含气量都有一定的变化范围,但总体上看,含气量随煤阶的增大而增高。低煤阶的煤含气量一般为2.5~7m3/t,高煤阶的煤含气量可达35m3/t。
煤的灰分是指煤中的矿物质。据其含量可划分4个级别:灰分含量小于15%为低灰分,15%~25%为中灰分,25%~40%为较高灰分,大于40%为高灰分。灰分含量愈低,煤质愈好,甲烷吸附量愈高。
镜质组含量大于80%,灰分含量小于25%的煤层一般具有生气率高、吸附量大(大于15m3/t)、可解吸率高的三高特点,有利于煤层气富集高产。
(三)良好的盖层是煤层气藏保存的必要条件
封盖层对于煤层气的保存与富集具有十分重要的作用。良好的封盖层可以减少煤层气的向外渗流运移和扩散散失,保持较高地层压力,维持最大的吸附量,减弱地层水对煤层气造成的散失。在不同沉积环境下形成的不同类型封盖层具有不同的封盖能力。泥岩微孔发育,封盖能力强,且性能稳定,是良好的封盖岩类。致密砂岩与石灰岩的封盖性能则有强有弱,取决于后期成岩作用的影响,如果在生气高峰期以前为致密岩性,则对煤层气封盖有效。另外,由于地区不同,地质作用的影响程度不同,同类型盖层的封盖性能也不一样。因此,应根据具体地区的地质条件区别对待,具体分析,以评价其对煤层气保存与富集的影响程度。
一般情况下,煤层泥、页岩等直接盖层厚5m以上,平面上连续稳定分布,其上又有区域性盖层,有利于阻止上部网络状渗滤水对吸附气的洗刷造成的散失,故对煤层气保存最为有利。沁水、鄂尔多斯盆地煤层气富集规律显示:河间湾沼泽相煤层厚,直接盖层好,含气量和产气量高。
(四)岩浆热变质作用有利于煤层气富集
沁水盆地南部、辽宁阜新与铁法盆地煤层气高产井主要分部于区域岩浆热变质区域。原因是在岩浆活动等热事件作用下,增大了煤层生气量和生气强度,加上生烃史和构造史的良好配置,使得这些地区的含气性普遍较好,含气饱和度普遍较高。而且岩浆的热力烘烤,使煤中有机质挥发,留下很多密集成群的浑圆状或管状气孔,提高了储层的孔隙度;岩浆侵入的动力挤压与冷却收缩,产生的外生裂隙与内生裂隙(割理)叠加,使煤层渗透性增强,因此煤层气井往往高产。但是,如果在火山岩侵入体与煤层接触带附近,由烘烤作用形成天然焦,则对煤层气勘探不利。
例如辽宁阜新刘家区块,该区块1999年至今施工了70余口煤层气地面开发井,单井产气量1000~8500m3/d,通过近年来刘家区煤层气开发实践证明,在靠近辉绿岩墙、岩床附近的煤层被侵入体烘烤,使煤变质程度增高,煤层气含量大,内、外生裂隙极其发育,是煤层气开发的理想区域。
(五)地下水滞留区有利于中、高煤阶煤层气保存
地下水动力状态也是影响煤层气高产富集的因素之一。承压水区水动力处于弱径流-滞留区,表现为地层水矿化度较高,水动力较弱,有利于煤层气的保存和富集,统计结果表明一般中高煤阶煤层含气量随地层水矿化度增高而增高(图4-1),因此中高煤阶高矿化度有利于煤层气的保存。
沁水盆地南部高煤阶区下二叠统山西组矿化度大于1000mg/L的地域覆盖了包括郑庄、大宁、潘庄、樊庄、赵庄南在内的广大地区。这一地区高矿化度地下水的存在,是本组含水层等势面在该区坡度极为平缓或存在“洼地”的必然结果,共同反映出地下水高度滞流的重要特征,对煤层中煤层气的保存极为有利。

图4-1 沁水盆地南部煤层气含气量与矿化度的相关性图

(六)适宜的水文地质条件有利于低煤阶地区生物成因气生成
低煤阶煤层热成因气生气量较少,但如有充足的大气淡水补给、低矿化度、低硫酸盐、低温、缺氧,适宜的水动力条件下有利于甲烷菌的大量生长,具备大量生物气生成的地质条件,配合良好的保存条件,易于生物成因煤层气藏的形成。
准噶尔盆地南缘位于天山北麓,天山溶水补给使得地层水矿化度较低,适宜的水动力条件有利于生物气的生成。该地区昌试1甲烷δ13C为-64.6‰~-41.9‰,清水河901孔侏罗系天然气甲烷δ13C同位素为-52.1‰,δH 同位素为-233‰(生物成因气小于-180‰),CI/C1-5为0.999,显示出生物成因气的特点(图4-2)。

图4-2 准噶尔盆地南缘次生生物气生成模式图

(七)地应力低值区煤层渗透性好,有利于煤层气开采
构造应力是控制煤层渗透率最主要的因素,煤层渗透率与地应力一般呈负相关关系。
构造应力场中的低应力分布区往往是裂缝高密度分布带,煤的割理系统发育程度决定了煤层渗透性的好坏,影响着煤层气井的产量及勘探后期井网设计和强化处理方案的实施。煤层割理发育,渗透率高,有利于大面积疏通吸附于煤颗粒基质表面的气态吸附烃解吸。
宁武盆地南部高应力分布区位于西部地区,该地区断层发育,煤岩割理裂隙不发育,渗透性差,而低应力分布区位于该区中东部地区,是高密度裂缝分布带,煤层渗透性好,煤层气井产气效果较好(图4-3)。

图4-3 大宁—吉县地区煤储层渗透率与原地应力关系图

沁水盆地南部潘庄—大宁地区后期抬升幅度大,地应力得以释放,处于低应力区,虽然煤岩演化程度高(最高RO大于4%),但煤层割理裂隙发育,渗透性较好,一般可达到1×10-3μm2以上,煤层气井产气效果好。
(八)盆地边缘斜坡带或构造高部位有利于煤层气高产
处于盆地上斜坡带或构造高部位是煤层气富集高产的有利部位,原因有以下几点:
(1)构造高部位往往为低势区,是烃类运移指向区。上斜坡带煤层早期煤层埋藏深,生气条件好,煤层后期抬升幅度大,形成低势区,成为烃类运移指向区,配合区域性分布稳定的直接盖层,易于形成高含气、高饱和煤层气藏。
(2)构造高部位割理发育,煤层渗透性好。上斜坡带处于盆地后期构造幅度大,煤层埋藏相对较浅,处于地应力相对低值区,张性裂隙发育,煤层渗透性好,利于煤层气井高产。
(3)构造高部位在整体降压情况下煤层气井具有输入型的产气特征。在整体降压情况下,高部位容易优先形成面积降压,处于构造高部位的煤层气井一般产水量小,产气量大的特征。
例如大宁—吉县地区,该地区构造形态呈“一隆、一坳、两斜坡”特征,既古驿—窑渠隆起、薛关—峪口坳陷和东西两个斜坡带(图4-4)。分析认为位于古驿—窑渠背斜轴部煤储层裂隙系统发育,处于地应力低值区,煤层含气量高,顶底板封盖性好,试采效果好,是煤层气富集高产最有利部位。该地区高产井如:吉试1井(日产气2847m3)、吉试3井(日产气1525m3)、吉试5井(日产气6800m3)、吉试13井(日产气2446m3)均位于背斜的轴部,而位于背斜翼部低部位的吉试4井(日产气64m3)、吉试10井(日产气58m3)、吉试14井(日产气104m3)产气量均较低。

图4-4 大宁—吉县地区吉试10井—吉试6井构造剖面图

另外,沁水南部、韩城、三交—柳林、宁武南等地区均表现出高产井位于封盖条件好的构造高部位或者上斜坡带。

相关要点总结:

15546048863:煤层气形成与分布
邱雅答:通过对国内、外典型煤层气的系统解剖,将煤层气边界系统归纳为五类:水动力边界,风氧化带边界,断层边界,物性边界,岩性边界。 水动力边界:以吸附态为主的煤层气大部分通过地下水静水压力作用得以赋存,同时地下水的补给、运移、滞留、排泄控制了煤层气聚集的基本单元。因此,地下水动力条件是煤层气富集成藏的决定性因素之...

15546048863:我国与美国煤层气勘探开发条件对比
邱雅答:(一)中美煤层气地质条件对比 我国煤层气资源丰富,但是具有与美国不同的成煤和煤化作用地质条件,地壳运动具有多期叠加性,构造活动具有复杂多样性,因而我国煤层气成藏机理和气藏富集规律均与美国不同,煤层气勘探开发表现出诸多特殊性。1.构造背景不同 美国位于北美地台之上,北美地台是以加拿大和格陵兰...

15546048863:恩洪矿区煤储层特征、含气特征及勘探开发建议
邱雅答:前人已对该区盆地构造特征、煤层气成藏条件、有利区块筛选等方面进行了研究(邓明国等,2004;王朝栋等,2004;桂宝林,2004),认为恩洪矿区是滇东黔西地区煤层气勘探开发的有利区块之一(桂宝林,2004)。本文在对恩洪矿区煤层气赋存特征研究的基础上,进一步探讨了适合该区的煤层气勘探开发方式,以期为该区煤层气开发提供思路...

15546048863:我国煤层气成藏类型具有多样性
邱雅答:构造圈闭气藏 构造圈闭的煤层气藏在目前的煤层气勘探开发中越来越受到重视,此类气藏一般位于构造的相对高部位,煤层气井高产,而且具有水少气多的特征,对于低煤阶而言,构造圈闭尤为重要,由于低煤阶煤层吸附能力差,游离气占比较大,构造圈闭有利于游离气的保存。矿化作用封闭气藏 成岩作用可使煤层顶...

15546048863:煤层气有利目标区优选
邱雅答:其中大兴井田为一北北东向延展的向斜构造,表现北翼缓南翼陡,煤层气资源量为92.77×108m3。 铁法煤田大兴井田具有资源条件好、资源丰度值高、储层特征清晰、具煤层气利用市场广阔等特点,有良好的煤层气开发前景。1996~2008年间,铁法煤田大兴井田共施工煤层气参数生产试验井13口。 2.煤层气成藏条件 大兴井田岩浆活动...

15546048863:煤层气压力开采方式
邱雅答:地面钻井方式是通过钻井设备直接从煤层中提取煤层气,这种方式的煤层气是可用资源,它有助于减少风排瓦斯的需求,从而降低煤矿对通风设施的依赖,提升矿工的作业安全环境。尽管这种技术在国外已经得到广泛应用,但在我国,由于部分煤层透气性较差,地面开采面临一定的挑战。然而,如果能积极开发,据估计每年至少...

15546048863:煤成(型)气地质研究及勘探开发简况
邱雅答:全面的地质综合评价,尤其是在黑勇士盆地、皮申斯盆地及圣胡安盆地开展了大规模的研究和开发试验,根据各地的经验,提出在选择勘探、开发煤层的有利区块进行地质综合评价时,应考虑一系列地质因素,即气含量、渗透性、煤阶、煤层的物理性质、煤层厚度、埋深、地温梯度、地应力、顶底板岩层特征、沉积环境及构造条件等(叶建...

15546048863:中国不同煤阶煤的煤层气成藏特征对比
邱雅答:我国西北地区低煤阶煤的煤层气资源丰富,资源量占全国资源总量的50%。高低煤阶煤的气体成因、物性特征、水文地质条件、含气性和成藏过程与低煤阶煤和国外高煤阶煤明显不同,高低煤阶煤的成藏差异性非常明显,二者在匹配的条件下有可能形成煤层气高产富集区,形成煤层气勘探的有利地区。 关键词 煤层气 高煤阶 低...

15546048863:国外煤层气勘探开发进展及启示
邱雅答:考虑到煤层气开发初期具有产量低、投入大、投资回收期长的特点,无法与常规石油、天然气开发进行竞争,美国政府扶持煤层气开发的指导思想是以煤层气从开发成本、销售价格等方面可与常规天然气竞争为出发点决定税收补贴的程度;同时,补贴政策要有一个相当长的适用期,以培植煤层气产业的成熟。第29条税收补贴政策是用单位...

15546048863:郑庄区块煤层气富集主控地质因素及开发前景分析
邱雅答:摘要: 寻找煤层气富集高产区是煤层气勘探开发过程中一项重要的工作,通过对煤层气富集成藏的规律及开发潜力进行分析,为煤层气有利开发区的优选提供依据。本文从沉积环境、水文地质条件及地质构造三个方面,对沁水盆地南部郑庄区块山西组 3#和太原组 15#煤层气富集规律进行了分析。结果表明: ( 1) 区块内 3#煤层顶板...

(编辑:本站网友)
相关推荐
关于我们 | 客户服务 | 服务条款 | 联系我们 | 免责声明 | 网站地图
@ 百韵网