百韵网 >>  正文

我国煤层气成藏类型具有多样性 中国不同煤阶煤的煤层气成藏特征对比

来源:www.baiyundou.net   日期:较早时间

煤层气有多种成藏模式,根据中国煤层气勘探实践,对煤层气藏类型划分如下。

压力封闭气藏 上覆较厚且分布稳定的泥页岩、膏盐岩作为盖层,煤层上倾方向或侧向上多为岩性尖灭或断层遮挡,由欠压实和蒙脱石脱水等作用形成高压地层,气态烃吸附量大,含气量高,含水性差。这类高压煤层气藏已见于鄂尔多斯盆地东部地区,如河东地区华威1井煤层压力系数约为1.17。

承压水封堵气藏 常形成于宽缓向斜或斜坡中段,其断裂不甚发育,煤系地层上、下部存在良好的泥、页岩作为隔水层,特别对于构造抬升盆地的高煤阶气藏,盆地早期下陷进入高热变质作用阶段,煤阶高生气量大;后期抬升松动,煤层物性变好,次生割理发育,下倾部位有充足气源供给,上倾部位形成承压水封堵。这类气藏后期没有被水打开,为原生气藏。沁水煤层气田处于气体运移的区域指向位置,而煤层由于上覆50m厚的泥岩盖层,封盖条件好,受北西、南东两个方向的侧向水封堵,在樊庄—潘庄一带为局部滞流水环境,形成构造变形差异聚集承压水封堵煤层气藏,水的总矿化度较高,气藏的δ13C1较重,一般为-28‰~-30‰,具原始气藏特征。

表8-4 我国中高煤阶区煤层气成因分带特征表

顶板水网络状微渗滤局部封闭气藏 煤层顶板泥岩较薄,横向稳定性差,或处于张性断层发育区,水体在含煤地层局部沿煤层割理、裂隙网络状微渗滤,水动力活动比较微弱,大部分地区对烃类起到一定封堵作用形成低丰度煤层气藏,气藏含气量和吸附饱和度低。此类煤层气藏开采中一般水多气少。

构造圈闭气藏 构造圈闭的煤层气藏在目前的煤层气勘探开发中越来越受到重视,此类气藏一般位于构造的相对高部位,煤层气井高产,而且具有水少气多的特征,对于低煤阶而言,构造圈闭尤为重要,由于低煤阶煤层吸附能力差,游离气占比较大,构造圈闭有利于游离气的保存。

矿化作用封闭气藏 成岩作用可使煤层顶、底板原为渗透层(砂岩),后期为封盖层(致密砂岩),只要与煤层生气高峰期匹配,对煤层气成藏就有利;如果匹配不好则对煤层气成藏不利。



中国不同煤阶煤的煤层气成藏特征对比~

王红岩 李景明 李剑 赵群 刘洪林 李贵中 王勃 刘飞
(中国石油勘探开发研究院廊坊分院 河北廊坊 065007)
作者简介:王红岩,1971年生,男,江苏徐州人,高级工程师,博士,长期从事煤层气等新能源综合地质研究。地址:河北省廊坊市万庄44号信箱石油分院,邮编:065007。
国家973计划项目资助(编号:2002CB211705)。
摘要 高低煤阶煤的煤层气在储层物性、地层水矿化度、煤的吸附性和成藏过程方面具有较大差别。国内学者普遍认为高煤阶煤层由于其演化程度较高,割理不发育,煤层的渗透率极低而低估了勘探前景,以至于形成了煤层气勘探的“禁区”。我国地质条件和含煤盆地的构造活动要比美国复杂得多,煤层气的生成和富集有着自身的特点,而且多数煤层在其沉积后经历了多个期次、多个方向的应力场改造,而且大部分高煤阶煤的形成与岩浆热变质事件有关。我国西北地区低煤阶煤的煤层气资源丰富,资源量占全国资源总量的50%。高低煤阶煤的气体成因、物性特征、水文地质条件、含气性和成藏过程与低煤阶煤和国外高煤阶煤明显不同,高低煤阶煤的成藏差异性非常明显,二者在匹配的条件下有可能形成煤层气高产富集区,形成煤层气勘探的有利地区。
关键词 煤层气 高煤阶 低煤阶
ComParison on Accumulation Performance of CBM in Different Rank Coal Seams of China
Wang Hongyan,Li Jingming,Li Jian,Zhao Qun
Liu Honglin,Li Guizhong,Wang Bo,Liu Fei
(Langfang Branch of PetroChina Research Institute of Petroleum ExPloration&Development Langfang 065007)
Abstract:Accumulation performances of CBM are quite different in different rank coal seams such as reservoir physical features,salinity of formation water,absorption of coal and accumulation history of coal.It is generally understood that high rank coal seams are so called forbidden area for CBM exploration because of high metamorphic grade,undeveloped cleats and low permeability.In fact,the exploration prospects of CBM are underestimated.CBM accumulation performance of China has its own features which are much more complicated than that of the U.S.and the main reasons are that most of coal seams of China suffered from historical multiphase and multidirectional transformation of stress after sedimentation,moreover,formation of these coal seams were related to the thermal events of magmatism.There are rich CBMresources in low rank coal seams of northwest parts of China which accounts for 50 percent of total CBM resources of China.The cause of formation of CBM,physical features,hydrogeology conditions,gas contents and accumulation process are quite different between high rank and low rank coals as well as between domestic and overseas.Either high rank coal or low rank coal may form favorable CBM accumulation and prospection area under matching geological conditions.
Keywords:CBM;high rank coal;low rank coal
我国高煤阶煤的煤炭资源量巨大,其中煤层气资源量占中国煤层气总资源量的30%〔1〕。由于美国煤层气勘探成功的含煤盆地的煤阶都为中低煤阶,国内学者普遍认为高煤阶煤层由于其演化程度较高,割理不发育,煤层的渗透率极低而低估了勘探前景,所以研究高煤阶煤层气成藏条件,开展高低煤阶煤层气成藏机理对比研究,具有重要科学意义。为了更好地对高煤阶成藏特征进行研究,这里着重通过高低煤阶对比,来探讨高煤阶成藏的特殊性。为了便于对比,将Ro<0.7%定义为低煤阶煤层气藏,Ro>2%视为高煤阶煤层气藏,Ro>0.7%~2%视为中煤阶煤层气藏。
1 高低煤阶煤层气藏的成因不同,高煤阶以原生和次生热成因煤层气为主,低煤阶煤以原生生物成因煤层气为主
煤层气存在生物成因和热成因两种。原生生物成因气是指煤化作用的早期阶段(成岩作用阶段),有机质在微生物作用下降解形成的煤层气;次生生物成因气是指经历了变质作用的中低煤阶煤(Ro<1.5+%)抬升后在微生物作用下形成的煤层气;原生热成因气是指有机质在变质作用过程中形成的煤层气;如果原生热成因气经过解吸—扩散—运移—再聚集,则为次生热成因煤层气。
高煤阶煤层气藏主要为原生与次生热成因煤层气。以沁水盆地南部煤层气藏为代表。沁南地区煤层主要为高煤阶无烟煤,Ro=2.2%~4.0%之间,煤层气主要为热成因。煤层气甲烷δ13C总体偏小,在-26.6‰~-36.7‰之间,且随着埋深的增加而变大。这是由于煤层气的解吸—扩散—运移引起同位素的分馏导致。这种次生热成因的煤层气在国内外非常常见。滞流区受解吸—扩散—运移分馏作用的影响小,基本保持了原始状态。可见沁南煤层气藏煤层气的成因在空间上存在分带现象:次生热成因煤层气存在于浅部径流带,原生热成因气存在于深部滞流区。
未熟低煤阶煤层气藏以原生生物成因煤层气为主,代表性煤层气藏位于美国粉河盆地。粉河盆地第三系Fort Union组的煤在大部分地区为褐煤(Ro=0.3%~0.4%),深部存在高挥发分烟煤,没有达到可以大量产生热成因甲烷的成熟度。其甲烷δ13C值为-60.0‰~-56.7‰,δD值为-307‰~-315‰。表明以生物成因气为主,且主要是通过微生物发酵代谢途径形成的〔2〕。
低煤阶成熟煤层气藏煤层气的成因非常复杂,既有次生生物成因的,也有原生与次生热成因的。美国的圣胡安和犹因他盆地都存在这三种成因的煤层气。我国阜新盆地白垩系阜新组煤的Ro=0.6%~0.72%之间,据同位素和煤层气组分分析,该区煤层气主要为次生热成因,其次为次生生物成因。
2 高低煤阶煤吸附能力的差异性很大,高煤阶区域煤层吸附量大,含气量高
煤的变质程度决定着煤层气生成量和煤的吸附能力,因而对煤层气含气量起着决定性影响。煤阶越高,煤层气生成量越大。吸附能力随煤阶增高经历了低—高—低三个阶段,在Ro=3.5%左右时达到极大值[3]。
高煤阶煤层气藏含气量最高。沁南煤层气藏含气量一般在10~20m3/t,最高可达37m3/t。除了煤阶影响外,保存条件也起到了一定作用。
低煤阶未熟煤层气藏含气量普遍较低。如粉河盆地煤层气含量一般为0.78~1.6m3/t,最高不超过4m3/t。低煤阶成熟煤层气藏含气量相对较高,犹他州中部上白垩统Ferron砂岩段Ferron煤层气藏含气量为0.37~14.3m3/t,一般在5~10m3/t。阜新盆地煤层气含量一般为8~10m3/t。低煤阶煤层气藏煤层的顶底板因成岩作用微弱而使其封闭能力低于高煤阶煤层气藏。因此对于低煤阶煤层气藏而言,地下水动力封闭显得尤为重要。低煤阶煤层气藏因含气量非常低,因此就必须发育巨厚煤层使得煤层气资源丰度大,高渗透率使得单井排采半径大,这样才可具备商业开发价值。
3 高低煤阶在物性方面差异的实质是物性变化二元论,变质程度高,基质致密,煤层物性渗透率偏低
高煤阶的沁南煤层气藏,储层渗透率为(0.1~5.7)×10-3μm2,一般不超过2×10-3μm2。煤层孔隙主要为微孔和过渡孔,中孔和大孔罕见,孔隙度在1.15%~7.69%之间,一般均<5%,对渗透率几乎没有贡献[4]。割理严重闭合或被充填,对渗透性的贡献微弱。构造裂隙是渗透性的主要贡献者。这种孔裂隙发育特征决定了煤层气由基质孔隙解吸向裂隙扩散困难,吸附时间长,达到产量高峰时间短,稳定低产时间长[5]。
低煤阶未熟煤层气储层的基质孔隙度较高,且以大孔所占比例较高,对储层渗透率有一定贡献,因割理密度低而控制储层渗透率的主要因素是构造裂隙;低煤阶成熟煤层气储层渗透性的主要贡献者是割理和构造裂隙;高煤阶煤层气藏因基质孔隙度低且多为微孔,割理严重闭合或被矿物质充填,因此渗透率的主要贡献者是构造裂隙。低煤阶煤层气藏的渗透率一般大于高煤阶煤层气藏。
为了便于对比,这里采用吐哈盆地的褐煤和沁水盆地的无烟煤开展模拟工作。褐煤由于演化程度低,裂隙不发育,主要表现为孔隙型。随着煤阶的增加,煤层裂隙发育,基质变得致密,主要表现为裂隙型[6]。

图1 高低煤阶运聚压差与系统压力关系图

无烟煤高压情况下0.14MPa的压差就可以突破;低压情况下0.50MPa的压差可以突破;随着压力的降低,运聚压差增大。表明无烟煤降压基质膨胀物性降低,加压基质收缩物性增高。
对于吐哈盆地褐煤,模拟结果相反,高压情况下0.08MPa的压差就可以突破,低压情况下0.03MPa的压差就可以突破,褐煤降压基质膨胀物性增大,加压基质收缩物性降低。储层物性变化二元论反映了煤储层随着煤层气不断开采,地层压力不断下降,煤储层特征变化的实质(图1)。
4 构造热事件和构造应力场对煤层物性起到决定作用
由岩浆侵入引起储层结构和构造改变,增大煤层气储藏空间的作用,称岩浆侵入活动的储藏作用。岩浆的热力烘烤,使煤中有机质挥发,留下很多密集成群的浑圆状或管状气孔,提高了储层的孔隙度;煤基质收缩,产生收缩裂隙;岩浆侵入的动力挤压,产生的外生裂隙与内生裂隙(割理)叠加,使煤层裂隙性质、规模发生变化,裂隙度提高,渗透性增强。
煤储层中天然裂隙的壁距对原始渗透率起着关键性的控制作用。天然裂隙壁距是地应力大小和方向的函数,构造应力场主应力差对岩层裂隙壁距和渗透率的影响存在两类效果截然相反的情况。当构造应力场最大主应力方向与岩层优势裂隙组发育方向一致时,裂隙面实质上受到相对拉张作用,主应力差越大,相对拉张效应越强,越有利于裂隙壁距的增大和渗透率的增高。而在最大主应力方向与岩层优势裂隙组发育方向垂直时,裂隙面受到挤压作用,主应力差越大,挤压效应越强,裂隙壁距则减小甚至密闭,渗透率降低。也就是说,构造应力实质上是通过对天然裂隙开合程度的控制而对储层原始渗透率施加影响。
5 水文地质条件对高低煤阶煤层气成藏控制的差异性,高煤阶滞流水区域为富气区
地层总矿化度高值区的形成反映为闭塞的沉积环境,古气候为半干旱,水体外泄条件差,封闭条件极好,地层水不断浓缩的结果。同时由于断裂活动,导致高矿化度地层水通过断层向上运移,造成矿化度纵向上的分布和高值区的出现。因而,地层水的矿化度是反映煤层气运聚、保存和富集成藏的一个重要指标。
沁水盆地东部边界晋获断裂带的北段对中奥陶统含水层组起到明显的横向阻水作用,中段导水性及水动力条件强烈,南段地下水迳流条件极差,是不导水的。南部边界由东部导水段、中部阻水段以及西部导水段组成,特别是中段的阻水性质,对晋城一带煤层气的保存与富集起到了重要作用。西部边界以安泽为界,北段为一阻水边界,南段则由导水性断层组成。内部存在着4条重要的水文地质边界。其中寺头断裂是一条封闭性的断裂,导水、导气能力极差;在沁水盆地中、南部寺头断裂和晋获断裂南段之间的大宁-潘庄-樊庄地区,山西组和太原组含水层的等势面明显地要高于断裂东、西两侧地区,地下水显然以静水压力形式将煤层中的煤层气封闭起来。在寺头断裂西侧的郑庄及其附近地区,地下水迳流强度可能较弱,较有利于煤层气保存[7]。
高煤阶地下水滞流区是煤层气聚集的最佳场所,但最近的勘探和研究表明,对于低煤阶煤层气藏,尤其是未熟低煤阶煤层气藏存在例外。
吐哈盆地沙尔湖地区煤层气藏古生界地层水总矿化度为20000~160000mg/L,平均矿化度达109300mg/L,平均值较海水(35000mg/L)浓缩了3倍多,具有高矿化度的特点。吐哈盆地低煤阶褐煤含气量测试小于2m3/t,在深度>300m,煤层厚度大于50m,水矿化度如此之高,含气量如此低,大大低于入们的想像。以往勘探工作证明,高煤阶勘探表明高矿化度对应着好的保存条件。
实验利用不同矿化度的水型饱和盐水和蒸馏水进行模拟,来研究褐煤在不同矿化度水的条件下对煤层气的吸附能力。饱和盐水模拟显示当地层压力达到1.7MPa时含气量达到2m3/t,蒸馏水模拟显示当地层压力达到2.5MPa时含气量达到2m3/t。矿化度越高,随着压力降低量越小,地层压力梯度降低越快,储层压力越低,造成吸附能力降低,含气饱和度增大,气体大量解吸散失。
低煤阶褐煤吸附量低,压力变化不明显,矿化度越高,吸附量越低,含气量越小;地质历史时期,矿化度不断增大。矿化度高造成吸附能力降低,造成地层压力梯度降低,储层压力低,含气饱和度增大,气体大量解吸散失。高变质倾向于高矿化度,预示着良好的保存条件,代表着水力交替作用弱,煤层气保存条件好。
6 高低煤阶煤层气藏的差异性主要体现在成藏过程的差异性,高煤阶煤层气成藏过程复杂
未熟低煤阶煤层气藏成藏历史简单〔8〕。煤层形成后一般只经历了一次抬升。但现今地下水的补给、运移、排泄和滞流对煤层气藏的调整和改造起决定作用。从煤层的形成直至现今都有气的生成,都对煤层气的成分和同位素特征有影响。但现今的构造格局和地下水赋存状态是影响煤层气生成的关键,也是控制成藏的关键。可见煤层气的生成具有持续性。
成熟低煤阶煤层气藏成藏过程相对简单,以深成变质作用为主,即便是存在岩浆活动影响,也仅为接触变质,影响范围有限。现今的构造格局和地下水赋存状态是煤层气藏调整改造的控制因素。煤层气的生成阶段性和持续性并存。埋深最大、热演化程度的时期决定了热成因煤层气的特征。因此,热成因煤层气的形成具有阶段性〔9〕。从煤层抬升到微生物能够活动的深度,次生生物气就开始生成,并一直持续至今。可见次生生物气的生成具有持续性。现今地下水的赋存状态不仅影响次生生物气的生成而且影响热成因气的运移。
高煤阶煤层气藏成藏过程复杂。无论存不存在二次生烃,区域岩浆热变质作用都是高煤阶煤层气藏形成的必要条件。煤层气的形成具有明显的阶段性。在达到最高演化程度后就不再有煤层气的生成,进入煤层气藏的调整改造阶段。
7 结论
中国高煤阶煤层气藏成藏特征主要集中在八个方面:①煤层气成因以原生和次生热成因煤层气为主;②高煤阶煤层吸附量大,含气量高;③滞流水区域为富气区;④煤层基质致密,渗透率低,割理裂隙应力敏感;⑤构造热事件对煤层物性影响较大;⑥要求持续排水降压开采,大型压裂;⑦分支井技术,大幅度提高单井产量;⑧成藏过程复杂。
中国低煤阶煤层气藏成藏特征主要集中在六个方面:①煤层气成因以生物降解气(原生、次生)为主;②煤演化程度低,含气量小,含气饱和度高;③低煤阶盆缘缓流晚期生物气成藏;④煤层割理裂隙不发育,基质疏松,渗透率高,应力不敏感;⑤以深成热变质为主,构造热事件影响小;⑥低煤阶自卸压开采机制;⑦竖井开采技术,小型压裂;⑧成藏过程简单,多一次沉降,一次调整。
由此可见高煤阶煤层气藏具有三条显著的优点:
(1)煤变质程度高,生气量大,煤吸附能力强,含气量大;
(2)构造热事件和构造应力场对煤层物性影响较大,构造热事件促进煤层气大量生成,同时改善了储层物性,构造应力通过对天然裂隙开合程度的控制而对储层原始渗透率施加影响;
(3)滞流水和高矿化度区域煤层气保存条件好,利用煤层气保存和排水降压开采。
参考文献
[1]赵庆波等.2001.中国煤层气研究与勘探进展勘探,徐州:中国矿业大学出版杜
[2]Scott A R.1993.Composition and orgin of coalbed gases from selected basin in the United States.Proceeding of the 1993 International CoalbedMethane Symposium,209~222
[3]桑树勋,范炳恒,秦勇等.1999.煤层气的封存与富集条件.石油与天然气地质,20(2):104~107
[4]傅雪海,秦勇,姜波等.2001a.煤割理压缩实验及渗透率数值模拟.煤炭学报,26(6):573~577
[5]刘洪林,王红岩,张建博.2000.煤层气吸附时间计算及其影响因素分析.石油实验地质,22(4)
[6]王红岩,刘洪林,赵庆波等.2005.煤层气富集成藏规律.北京:石油工业出版杜
[7]王红岩等.2001.沁水盆地南部煤层气藏水文地质特征.煤田地质与勘探
[8]苏现波,陈江峰,孙俊民.2001.煤层气地质学与勘探开发.北京:科学出版杜
[9]Scott A.R.2002.Hydrogeologic factors affecting gas content distribution in coal beds.International Journal of Coal Geology,50:363~387

赵庆波 孙粉锦 李五忠 李贵中 孙斌 王勃 孙钦平 陈刚 孔祥文
作者简介:赵庆波,1950年生,教授级高级工程师,中国石油天然气集团公司高级技术专家,中国地质大学(武汉)兼职教授;中国石油学会煤层气学组副组长;主要从事煤层气勘探开发工作,编写专著17部,发表学术论文50余篇。地址:河北省廊坊市万庄44号信箱煤层气所。电话:(010)69213108。E-mail:zhqib@petrochi-na.com.cn
(中国石油勘探开发研究院廊坊分院 廊坊 065007)
摘要:煤层气成藏模式可划分为自生自储吸附型、自生自储游离型、内生外储型;煤层气成藏期可划分为早期成藏、后期构造改造成藏和开采中二次成藏,特别指出了开采中二次成藏的条件。利用沉积相分析厚煤层的层内微旋回,细划分出优质煤层富含气段;进一步利用沉积相探索成煤母质类型及其对煤层气高产富集控制作用;阐述了构造应力场及水动力对煤层气成藏的作用机理。总结了煤层气开采特征:指出了煤层气井开采中的阻碍、畅通、欠饱和三个开采阶段,并认为欠饱和阶段可划分为多个阶梯状递减阶段;由构造部位和层内非均质性的差异形成自给型、外输型和输入型三类开采特征。根据地质条件分析了二维地震AVO、定向羽状水平井、超短半径水力喷射、U型井、V型井钻井技术的适用性及国内应用效果。
关键词:煤层气 成藏模式 成煤母质 高产富集 开采特征 适用技术
Coalbed Methane Accumulation Conditions, Production Characteristics and Applicable Technology Analysis
ZHAO Qingbo SUN Fenjin LI Wuzhong LI Guizhong SUN Bin WANG Bo SUN Qinping CHEN Gang KONG Xiangwen
(Reserch Institute of Petroleum Exploration and Development, PetroChina, Langfang Branch, Langfang 065007 China)
Abstract: Accumulation model of coalbed methane can be divided into three types: authigenic reservoir with adsorbed gas, authigenic reservoir with free gas and authigenic source rock with external reservoir. Three accumu- lation stages are indicated as early stage accumulation,late stage accumulation with tectonic reworking and second- ary accumulation during development. Conditions for secondary accumulation during development are specially in- dicated. Micro-cycle in thick coal are analyzed using sedimentary facies. Coalbed interval with high gas content is classified, and further more, coal-forming sources type and its controling on coalbed methane productive and en- richment is explored. Mechanism of tectonic stess field and hydrodynamic force on coalbed methane accumulation is elaborated. Production characteristics of coalbed methane wells is concluded as follows: blocked,unblocked and unsaturated production stages are indicated, and unsaturated stage is considered to be divided into several deple- tion stages; structure localization and inner layer heterogeneity result in three production characteristics-self-sup- porting, exporting and importing types. According to geological setting,the applicability and its effect of 2 dimen- tional seismic AVO (Amplitude versus Offset), pinnate horizontal multilateral well, ultrashort radius hyraulic jet- ting, U and V type well drilling technique is analyzed.
Keywords: Coalbed methane; accumulation model; coal-forming sources; productive and enrichment; pro- duction characteristics; applicable technology
1 煤层气成藏条件分析
1.1 煤层气成藏模式和成藏期
1.1.1 煤层气成藏模式划分为三类
自生自储吸附型:煤层气大部分以吸附态存在于煤层中,构造相对稳定的斜坡带富集。如沁水盆地南部潘庄水平井单井平均日产气3万m3;郑试60井3#煤埋深1337m,日产气2000m3。
自生自储游离型:煤层吸附气与游离气多少是相对的,多为同源共生互动,煤层气一部分以游离态存在于煤层中,有的局部构造高点占主体,早期煤层埋藏深、生气量高,后期抬升煤层变浅压实弱,次生割理发育渗透性好,两翼又是烃类供给指向,在有利封盖层条件下局部高点形成高渗透的高产富集区。准噶尔盆地彩南地区彩504井,构造发育的断块高点煤层次生割理裂隙发育物性好,游离气与吸附气同源共储,煤层深2575m,日产气6500m3。
内生外储型:煤层作为烃源岩,生成的气体向上部或围岩运移,在有利的圈闭条件下在砂岩、灰岩中形成游离气藏,使吸附气、游离气具有同源共生性、伴生性、转换性和叠置性,可在平面上叠加成大面积分布。鄂尔多斯盆地东缘韩城地区WL2~015井山西组煤层顶板砂岩厚14.1m,压裂后井口压力为2.32MPa,日产气2400m3。

图1 煤层气成藏模式图

1.1.2 煤层气成藏期划分为三类
早期成藏:随着沉积作用的进行,煤层埋深逐渐增加,大量气体持续生成。充分的生气环境,良好的运聚势能,足够的吸附作用,有利的可封闭、高饱和、高渗透成藏条件,为早期成藏奠定了基础。这类气藏δ13C1相对重(表1),表现为原生气藏特征。
构造改造后期成藏:系统的动平衡一旦被构造断裂活动打破,即煤层气藏将被水打开,煤层割理被方解石脉充填,则能量将再调整、烃类再分配,古煤层气藏遭受破坏,新的高产富集区块开始形成(图2)。
受构造抬升后在局部出现断裂背斜构造,抬升使煤层压力降低,气体发生解吸,构造运动产生的裂隙又沟通了低部位的气体,使之向局部构造高点运移聚集。当盆地沉降接受沉积时,压力逐渐增大,再次生气,背斜翼部气体再吸附聚集,这类气藏多为次生型,δ13C1相对轻(表1)。
表1 不同类型气藏CH4含量及δ13C1分布表



图2 煤层气运聚成藏过程

开采中二次成藏:煤层气原始状态为吸附态,开采中压力降至临界点后打破原平衡状态转变为游离态,气水将重新分配,解吸气窜层或窜位,从而形成煤层气开采中的二次成藏,这是常规油气不具备的条件。煤矿区这类气藏由于邻近采空区CH4含量较低。
(1)煤层气二次成藏中的窜位
窜位是指煤层气开采中气向高处或高渗区运移,水向低部位运移,形成煤粉、气、水三相流,再开发几年进入残余态,微小孔隙、深部气大量产出。煤层气开采过程中,在同一地区,有些井高产,有些井低产,这与他们所处的构造部位有关,解吸气向构造顶部或高渗通道差异流向或“游离成藏”,煤层气发生窜位,使得高点气大水少,甚至后期自喷,向斜水大气少。如蒲池背斜煤层气的开发实例(图3,表2)。
该地区早期整体排水降压单相流,中期气、水、煤粉三相流,后期低部位降压,高部位自喷高产气井单相流,4年后基本保持现状。区块中477口直井和57口水平井已开采4年多,目前产气不产水直井、水平井分别为29%、11%,产水不产气分别为12%、19%。
(2)煤层气二次成藏中的窜层
窜层是指煤层气开采中或煤层采空区上部塌陷中解吸气沿断层裂隙或后期开发中形成的通道等向上再聚集到其他层位。主要有五种情况:(1)原断层早期是封闭的,压力下降到临界点后是开启的;(2)水平井穿透顶底板和断层;(3)压裂压开顶底板;(4)开采应力释放产生裂缝使解吸气穿透顶底板进入砂岩、灰岩形成游离气;(5)煤层采空后顶板坍塌应力释放,底部出现裂隙带。
典型实例分析:
(1)阜新煤矿区开采应力释放导致二次成藏
采动、采空区:阜新钻井7口,采空区坍塌后在煤层顶部砂岩裂隙带单井日产气1.5万~2.15万m3,CH4含量大于50%。生产1年,单井累计产气折纯最高260万m3;阳泉年产气7.16亿m3,90%是邻层抽采;铁法70%煤层气是采动区采出(图4)。

图3 蒲池背斜煤层气开发特征图

表2 蒲池背斜开发井开采情况


注:日产气及日产水两栏中分子为四年前产量,分母为目前产量。

图4 采动、采空区煤层气开采示意图

(2)直井压裂窜层
蒲南3~8井压裂显示超低破裂压力,为9.6MPa,低于邻井10MPa以上,初期日产水62m3,4年后目前为54.8m3,累计产气仅有3.8万m3。
(3)水平井窜层
FZP03~1井煤层进尺4084m,钻遇率81%,主、分支共钻遇断层4条,明显钻入下部水层,开发效果差(图5):最高间歇日产气1366m3,累计产气29万m3,累计产水4.3万m3,目前日产气392m3,日产水28m3;原水层的构造高点被解吸气占据。而比该井浅75m的FZP03-3井日产气3783m3,日产水5m3。
在煤层气的勘探开发中应形成一次开发井网找煤层吸附气,二次开发井网找生产中由于开采中压力下降,烃类由吸附态变游离态使气水重新分配,打破原始平衡状态,解吸气窜层或窜位形成二次成藏的游离气藏的勘探开发思路。
1.2 有利的成煤环境和煤层气高产富集旋回段
以往油气勘探上用沉积相分析砂体变化特征,通过对大量煤层粘土矿物分析、植物鉴定、测井特征,特别是全煤层取心观察,以及煤质和含气性分析认为:沉积环境对煤层气的生成、储集、保存和渗透性能的影响是通过控制储层物质组成来实现的,层内的非均质性和煤质的微旋回性受控于沉积环境,并控制层内含气性和渗透性的非均质变化。
平面上:河间湾相煤层厚、煤质好、含气量高、单井产量高,河边高地和湖洼潟湖相相反(表3)。

图5 FZP03-1、FZP03-3水平井轨迹示意图

表3 鄂东气田C—P不同煤岩相带煤质与产量数据表


纵向上:受沉积环境影响,厚煤层往往纵向上形成夹矸、暗煤、亮煤几个沉积旋回,亮煤镜质组含量高、渗透率高、含气量高。不同的煤岩组分受成煤母质类型的控制,高等植物丰富,经凝胶化作用形成的亮煤,灰分低、镜质组高、割理发育、含气量高;碎屑物质、水溶解离子携入或草本成煤环境的暗煤相反。
武试1井9#煤可划分为4个层内微旋回(图6)。灰分含量:暗煤14%~15%,亮煤3.7%~5.1%;镜质组含量:暗煤23%~49%,亮煤66%~79%。
1.3 构造应力场对煤层气成藏的控制作用
古应力场高值区断裂发育,水动力活跃,煤层矿化严重,含气量低;低值区则煤层割理发育,处于承压水封闭环境,煤层气保存条件好,含气量高。局部构造高点也往往是应力场相对低值区,并且煤层渗透率高、单井产量高,煤层气保存条件好,煤层没被水洗刷,含气量高。
1.4 热演化作用对煤层气孔隙结构的控制作用
高煤阶以小于0.01μm的微孔和0.01~1μm中孔为主,一般在80%以上,中、微孔是煤层气主要吸附空间,靠次生割理、裂隙疏通运移;

图6 武试1井9#煤沉积旋回图


图7 高、低煤阶孔隙结构特征

低煤阶以>1μm大孔和中孔为主,演化程度低,裂隙不发育,大孔是吸附气、游离气主要储集空间和扩散、渗流和产出通道;
中煤阶以中、大孔为主,中、大孔是煤层气扩散、渗流通道。
核磁共振:煤层气藏储层的T2弛豫时间谱,为特征的双峰结构,与常规低渗透储层T2弛豫时间谱相对照,煤层气储层的两个峰之间有明显的间隔,这说明对于煤层气储层,束缚水与可动流体并不能有效沟通。然而不同煤阶煤储层T2谱的结构不同,这源于不同的孔隙结构(图7、图8),低煤阶以大孔为主、高煤阶以微孔小孔为主,高煤阶曲线峰值煤层左峰高右峰低,峰值中间零值,低煤阶相反,左峰为不可流动孔隙,右峰为可流动的次生割理裂隙储集体;高煤阶右峰可流动峰值越高(割理发育),气井产量越高(图9)。
1.5 水动力场对煤层气藏的控制作用
局部构造高点滞留水区低产水高产气,向斜承压区高产水。地下水一般在斜坡沟谷活跃,符合水往低处流、气向高处运移的机理。樊庄区块滞流—弱径流区域多为>2500m3/d高产井;东部地下水补给区含气量3/t、含气饱和度55%,见气慢,单井产量200~500m3/d(图10)。
2 煤层气开采特征
对于中国中低渗透性煤层,煤层气井一般为300m×300m井距,单井产量稳产期4~6年,水平井更短,开采中划分为上升期、稳产期、递减期三个阶段,递减期又可划分为多个阶梯状递减阶段。
2.1 构造部位和层内非均质性的差异形成三类开采特征
自给型:往往位于构造平缓、均质性强的地区。气产量为本井降压半径之内解吸的气从本井产出。排采井一般处于构造平缓部位,层内均质性强。日产气上升—稳产—递减三个阶段,这类井多低产(图11)。

图8 不同煤阶孔隙分布特征图


图9 不同煤阶煤储层T2弛豫时间谱


图10 樊庄区块地下水与含气量、煤层气高产区关系图


图11 煤层气单井开采特征图

外输型:位于构造翼部、非均质性强的地区。气产量一部分通过本井降压解吸半径内从本井产出,而大部分通过高渗通道或沿上倾部位扩散到其他井内产出。排采井一般处于构造翼部、非均质性强。日产气低产或不产—上升—缓慢递减,这类井多低产,并且产量递减快。
蒲池背斜的P1-11、PN1-1、PN2-5、HP1-10、HP2-11-3井位于背斜的翼部,属于构造的相对低部位,基本上没有气产出,而产水量较大,分析由于降压而解吸出来的气体向构造高部位运移而没有产出,具有输出型的开采特征。
输入型:多位于构造高点。初期本井降压解吸气随降压漏斗从本井产出,后期构造下倾部位解吸气又运移到本井产出。排采井处于构造高点,这类井一般高产、稳产期长。日产气上升—稳产—上升—递减。
蒲池背斜中位于构造高点的PN1-4、P1-3、PN2-7、P1-5井产气量高而产水量低,这与低部位气体的扩散输入有关,具有典型的输入型开采特征。
2.2 降压速率不同形成三类开采效果
2.2.1 畅通型解吸
抽排液面控制合理,降压速率接近解吸速率,有效应力引起的负效应小于基质收缩引起的正效应,渗透率随开采的束缚水、气产出上升—稳定,气泡带出部分束缚水,产量理想(图12-Ⅰ)。以固X-1井为例,该井排采制度合理,经半年的排水降压后液面基本保持稳定,日产气稳定在4320m3/d以上,目前还保持稳产高产。

图12 不同措施煤层气井产气影响特征曲线

2.2.2 超临界型解吸
解吸速率小于降压速率,降压液面下降速度太快,煤层裂缝、割理产生应力闭合,日产气急剧上升—急剧下降,渗透率下降—稳定,产气效果差(图12-Ⅱ)。以固Y-2井为例,该井经30余天的排水降压,液面降至煤层以下,由于抽排速度过快,前期产气效果差,2010年7月二次压裂及排采制度调整后,气体日产气量最高达4000m3/d,后期稳定在1600m3/d以上;PzP03井在产气高峰期日降液面63~87m,造成该井初期是全国单井产量最高(10.5万)而目前是该区单井产量最低的井。
2.2.3 阻碍型解吸
降液速率过慢,解吸速率大于降压速率,有效应力引起的负效应大于基质收缩的正效应,气泡变形解吸困难,降压早期受煤粉堵塞,液面阻力作用解吸不畅通,日产气不稳定,开发效果差(图12-Ⅲ)。FzP03-3井开采770天关井26次以上,开发效果很差。
2.3 煤层水类型及其开采特征
煤层水可划分为层内水、层间水和外源水;高产气区为层内、层间水,有外源水区为低产气区。
(1)层内水:煤层割理、裂隙中的水。日产水小,开采中后期高部位几乎不产,低部位递减。层内水又可进一步划分为可动水(洞缝)、吸附水(煤粒面)、湿存水(-5cm毛管内)、结晶水(碳酸钙)四类。
(2)层间水:薄夹层水渗入煤层。开采中产水量明显递减,可控制。
有层间水的气井连续降压可控制水产量,提高开发效果。沁水樊庄FzP11-1井煤层总进尺4710m。2009年4月投产,最高日产水175m3,目前日产气21436m3,日产水20.7m3,套压0.15MPa,液面4m,累计产水3.7万m3,累计采气814万m3。可以看出,对有层间水进入煤层气井的情况,短期加大排水量,后期日产气持续上升,开发效果较好。
(3)外源水:断层或裂缝沟通高渗奥灰水及其他水层。产水大,难控制。
3 煤层气勘探开发适用技术分析
3.1 地震AVO技术预测高产富集区
煤层与围岩波阻抗差大,煤层本身是强反射。其内含气、含水的差异在局部异常突出:高含气后振幅随偏移距增大而减少产生AVO异常(亮点),这与常规天然气高阻抗振幅随偏移距增大而增大出现的亮点概念不同,具有以下特征:高产井强AVO异常(高含气量低含水),煤层段为大截距、大梯度异常,即亮点中的强点;低产井弱AVO异常(低含气量高含水)为低含气、低饱和、低渗透特征。
煤层气高产区强AVO异常区的吉试1井5#煤含气量21m3/t,日产气2847m3(图13);低产区弱AVO异常的吉试4井5#煤含气量12m3,日产气64m3,产水90m3。据此理论,可用地震AVO技术预测高产富集区。

图13 吉试1井5#煤AVO特征图

3.2 定向羽状水平井钻井适用地质条件
全国已钻定向羽状水平井160余口,单井最高日产气10.5万m3。定向羽状水平井技术适合于开采较低渗透储层的煤层气,集钻井、完井与增产措施于一体,能够最大限度地沟通煤层中的天然裂缝系统,使同一个地区单井产量可提高5~10倍,适用地质条件有以下10点:
(1)构造稳定无较大断层:FzP03-1钻遇4条断层,日产气最高1366m3,目前687m3,日产水32~75m3;韩城04、07、09井日产水20~48m3,日产气小于60m3。
(2)远离水层封盖条件好:三交顶板泥岩厚3,19个月产水4.6万m3,不产气。
(3)软煤构造煤不发育:韩城、和顺12口井单井平均日产气720m3。
(4)煤层埋深小于1000m:煤层深800~1000m的武m1-1、Fz15-1井日产气3。
(5)煤厚>5m:柳林CL-3井煤层厚4m,最高日产气0.95万m3,稳产160天递减,日产气2807m3,累计121万m3。
(6)含气量>15m3/t:潘庄东部8m3/t(盖层厚2~5m),北部15~22m3/t(盖层厚>10m),尽管东部比北部浅100~200m,而北部6口井单井平均日产气3.0万m3,东部7口为1869m3,最高3697m3,相距6km单井产量差20倍。
(7)主分支平行煤层或上倾:单井平均日产气、阶段累计和地层下降1MPa采气效果分析,水平井轨迹:平行煤层产状最好,其次上倾,下倾差;“凸”“凹”型最差。
(8)煤层有效进尺>3000m:水平段煤层进尺3,阶段累计采气3。
(9)分支展布合理:主支长1000m左右,分支间距200~300m,夹角10°~20°。
(10)煤层有效钻遇率>85%:10口井煤层钻遇率3,最高3,阶段平均累计采气27万m3。
3.3 超短半径水力喷射钻井适用条件
我国利用该技术已钻煤层气井23口以上,效果均不理想。主要原因为低渗透,喷孔直径小、弯曲大,前喷后堵;水力喷射开窗直径28mm,孔径小,排采中易被煤粉和水堵塞。可进行旋转式大口径喷咀和裸眼喷射试验。
3.4 “山”型井、U型井、V型井钻井适用条件
由于中国煤层气藏具有低渗透的特点,且多属断块气藏,U型水平井沟通煤层面积小,应用效果较差。我国钻U型水平井16口以上,增产效果不明显。
SJ12-1井分段压裂日产气稳产1750m3,累计产气19.1万m3,开采3个半月后已递减。水平段下油管、玻璃钢管都取得成功,低渗透气藏效果差。较高渗透区[(1.0~3.6)×10-3μm2]效果好:彬长、寺河单井日产气0.56万~1.4万m3。
今后可进行1口水平井穿多个直井的“山”字型井组试验,目前国外利用该技术开发盐岩已成功。
4 结论
(1)根据中国煤层气勘探开发实践认识将煤层气成藏模式划分为自生自储吸附型、自生自储游离型、内生外储型三类;同时,认为煤层气成藏期划分早期成藏、后期构造改造成藏和开采中二次成藏三类,开采中二次成藏将是煤层气开发二次井网的主要产量接替领域。
(2)利用沉积相分析厚煤层、优质煤层和高产富集区;分析厚煤层的层内微旋回,成煤母质控制煤岩组分和单井产量,高等植物丰富,经凝胶化作用形成的亮煤,灰分低、镜质组高、割理发育、含气量高,是高产富集段;碎屑物质、水溶解离子携入或草本成煤环境的暗煤相反。
(3)古应力场低值区则煤层割理发育,处于承压水封闭环境,煤层气保存条件好,含气量高;滞留水区低产水高产气,向斜承压区高产水。
(4)由构造部位和层内非均质性的差异形成自给型、外输型和输入型三类开采特征,由降压速率不同形成畅通型、阻碍型和超临界型三类开采效果。
(5)高产井强AVO异常,即亮点中的强点;低产井弱AVO异常,为低含气、低饱和、低渗透特征。定向羽状水平井在适用的地质条件和钻井方式下才能取得较好的开发效果;超短半径水力喷射应首选渗透率较高、煤层构造相对稳定、含气量和饱和度较高煤层应用;U型、V型水平井钻井技术在低渗透气藏中效果差,高渗透区效果好。
参考文献
陈刚,赵庆波,李五忠等.2009.大宁—吉县地区地应力场对高渗区的控制[J].中国煤层气,6(3):15~20
陈振宏,贾承造,宋岩等.2007.构造抬升对高、低煤阶煤层气藏储集层物性的影响[J].石油勘探与开发,34(4):461~464
陈振宏,王一兵,杨焦生等.2009.影响煤层气井产量的关键因素分析——以沁水盆地南部樊庄区块为例[J].石油学报,30(3):409~412
邓泽,康永尚,刘洪林等.2009.开发过程中煤储层渗透率动态变化特征[J].煤炭学报,34(7):947~951
康永尚,邓泽,刘洪林.2008.我国煤层气井排采工作制度探讨[J].天然气地球科学,19(3):423~426
李金海,苏现波,林晓英等.2009.煤层气井排采速率与产能的关系[J].煤炭学报,34(3):376~380
乔磊,申瑞臣,黄洪春等.2007.煤层气多分支水平井钻井工艺研究[J].石油学报,28(3):112~115
鲜保安,高德利,李安启等.2005.煤层气定向羽状水平井开采机理与应用分析[J].天然气工业,25(1):114~117
赵庆波,陈刚,李贵中.2009.中国煤层气富集高产规律、开采特点及勘探开发适用技术[J].天然气工业,29(9):13~19
赵庆波,李贵中,孙粉锦等.2009.煤层气地质选区评价理论与勘探技术[M].北京:石油工业出版社
Diessel C F K. 1992. Coal-bearing depositional systems-coal facies and depositional environments.Springer-verlag. 19~22

相关要点总结:

13883689067:煤层气成藏条件、开采特征及开发适用技术分析
麻君答:摘要: 煤层气成藏模式可划分为自生自储吸附型、自生自储游离型、内生外储型; 煤层气成藏期可划分为早期成藏、后期构造改造成藏和开采中二次成藏,特别指出了开采中二次成藏的条件。利用沉积相分析厚煤层的层内微旋回,细划分出优质煤层富含气段; 进一步利用沉积相探索成煤母质类型及其对煤层气高产富集控制作用;...

13883689067:煤层气地质特征及成藏条件
麻君答:但原位吸附气体的能力相对较低;第二,深部煤储层含气量显著高于浅部煤储层,煤层气赋存状态在浅部煤储层中几乎为吸附气,在深部煤储层中吸附气、游离气、溶解气达到动态平衡,游离气的重要性随埋深而增大;第三,构造高点煤储层气饱和度高,储集气量大,游离气、吸附气同时富集,构造圈闭对深部煤层气成藏具有重大...

13883689067:煤层气藏
麻君答:在成藏要素和作用中除盖层条件外,煤层气藏的生气层、储气层和圈闭都是煤层本身,同时甲烷的生、运、聚作用也都发生在煤层之中。因此既要求煤层有很高的生气潜力,又要求煤层具有很强的储集吸附能力,还要求一定的渗透率以利于煤层甲烷的运移和排放等,只有当煤层本身兼有以上各种性能和作用时,才可能...

13883689067:煤层气地质特征及成藏条件
麻君答:(1)宏观煤岩类型 通过对本区伊犁含气区带伊宁含气区块的南台子矿、察布查尔矿;尼勒克含气区块;焉耆含气区带的塔什店哈满沟矿,侏罗系下统八道湾组和中统西山窑组煤层的井下观测。宏观煤岩类型均以光亮煤和半亮煤为主,次为半暗煤。煤岩成分以亮煤为主夹镜煤及暗煤,常见透镜状、条带状结构,断续状水平层理...

13883689067:中国不同煤阶煤的煤层气成藏特征对比
麻君答:摘要 高低煤阶煤的煤层气在储层物性、地层水矿化度、煤的吸附性和成藏过程方面具有较大差别。国内学者普遍认为高煤阶煤层由于其演化程度较高,割理不发育,煤层的渗透率极低而低估了勘探前景,以至于形成了煤层气勘探的“禁区”。我国地质条件和含煤盆地的构造活动要比美国复杂得多,煤层气的生成和富集有着自身的特点...

13883689067:宁武盆地煤层气勘探效果分析及启示
麻君答:在盆地南北两端,煤层埋深<1000m、<1500m的地域较开阔,面积大于500km2,构造简单区具备煤层气成藏条件,是煤层气勘探开发的有利区。 在盆地南部缓坡部位钻探了盆地内第一口煤层气探井——武试1井。主力煤层深826.2~912.2m,主煤层4#煤厚3m,9#煤厚14m(图2)。煤岩宏观类型为光亮—半亮煤为主,半暗淡煤次之,...

13883689067:我国与美国煤层气勘探开发条件对比
麻君答:我国煤层气资源丰富,但是具有与美国不同的成煤和煤化作用地质条件,地壳运动具有多期叠加性,构造活动具有复杂多样性,因而我国煤层气成藏机理和气藏富集规律均与美国不同,煤层气勘探开发表现出诸多特殊性。1.构造背景不同 美国位于北美地台之上,北美地台是以加拿大和格陵兰地盾为中心,以同心圆的方式向...

13883689067:典型实例
麻君答:不同煤阶煤层形成地质背景、气藏特征和成藏过程有着明显的差别,本节以世界上最典型的我国沁水盆地高煤阶煤层气、美国圣胡安盆地中煤阶煤层气和美国粉河盆地低煤阶煤层气为例,说明不同类型煤层气的特点和成藏机制。 一、沁水盆地东南部高煤阶煤层气 沁水盆地是我国煤层气商业化开发较早,也是目前我国煤层气产量最...

13883689067:煤层气藏特性
麻君答:煤在演化过程中生成的大量气体,一部分离开煤层,逸散在大气或地层中,或在合适的部位聚集成藏,即常规意义上的煤成气藏;另一部分存留在煤层中,这部分气体即煤层气。因此,煤层既是煤层气的源岩,又是煤层气的储集层。煤层作为储集层,有其明显特性(表3-5),煤储层是一种具有双重孔隙结构的...

13883689067:煤层气形成与分布
麻君答:因此,地下水动力条件是煤层气富集成藏的决定性因素之一。水动力边界可细分为地下水分水岭和水动力封堵两种类型。地下水分水岭的存在使其两侧的煤层气处于不同的流体流动单元,分属不同煤层气。这类边界在美国Utah州的中东部和中国的沁水盆地南部存在。地下水分水岭的形成受构造控制,一般为背斜的轴部。水动力封堵边界...

(编辑:本站网友)
相关推荐
关于我们 | 客户服务 | 服务条款 | 联系我们 | 免责声明 | 网站地图
@ 百韵网