百韵网 >>  正文

煤层气储层 煤储层和煤层气的储存

来源:www.baiyundou.net   日期:较早时间

2.6.1 煤层气储层及储层压力

2.6.1.1 煤层气储层

煤既是烃源岩,又是储集层。煤系地层在煤化作用过程中,所伴生出的煤层气一般足以达到煤层吸附所需求的气量,煤层是否含有工业性煤层气主要决定于煤储层的特性及后期的保存条件。因此,煤层气储集层不同于常规天然气储集层,其组成是单纯的煤,这里按照瓦斯地质学中的煤体结构的概念和煤的变质阶段对煤层气储集层进行分类描述(表2.24)。

(1)原生结构煤储层

这类储层主要由原生结构煤组成,煤体结构几乎没有受到构造破坏,煤层的原始结构和构造保存完整,以割理为主,偶尔可见到外生裂隙和继承性裂隙。研究表明这类煤的渗透能力最好,特别是割理最为发育的中变质阶段煤。目前成功的煤层气开发多集中在这类储层中,如美国的圣胡安盆地和中国的河东煤田等。煤和瓦斯突出统计研究表明,原生结构煤发育区一般不发生瓦斯突出,究其原因可能是积聚在这类煤中的瓦斯因裂隙连通性较好,以缓慢的速度不断释放出来,间接地说明了这类煤的渗透能力较强。因此,含气量较高的中变质阶段的原生结构煤储层,以其优良的孔渗性而作为煤层气勘探开发的首先目的层,同时,较完整的煤体结构使储层强化的实施成为可能。

(2)碎裂煤储层

表2.24 煤层气储层分类

(据张新民等,2002)

这类储层中割理依然存在,外生裂隙和继承性裂隙增多,储层的渗透性变化较大。对割理不发育的低变质和高变质煤,外生裂隙的增多无疑可提高储层渗透性;但对割理十分发育的中变质煤,外生裂隙的发育可能使渗透率增加或降低,主要取决于外生裂隙的方向和组数:方向多变、组数较多,将导致割理被严重改造,渗透性变差;方向单一,特别是继承性裂隙发育时,渗透性增强。碎裂煤储层在我国东部构造活动强烈的高变质煤分布区尤应重视,虽然高变质煤割理不发育或被矿物质充填,但含气量较高,因此外生裂隙成为煤层气运移的有效通道。同时,裂隙组数少、方向单一的煤层便于强化处理(如水力压裂)。

(3)碎粒煤储层

这类储层以外生裂隙多组、多方向发育使煤体破碎成粒状为特征,储集层的渗透能力较差。矿井瓦斯突出统计结果表明,碎粒煤分布区瓦斯不易运移释放出来,而容易积聚在应力集中地带,在开采过程中突然释放造成瓦斯突出事故。其渗透率一般在1×10-3μm2以下,就目前的开发工艺来说,不可作为煤层气开发目的层。

(4)糜棱煤储层

这类储层由发育劈理的鳞片煤和无任何裂隙的土状煤组成,其渗透性极差,渗透率在0.1×10-3μm2以下,是目前工艺无法开发的储集层。

2.6.1.2 煤层气储层压力

煤储层压力是指煤层孔隙中的流体(包括气体和水)压力。煤储层压力对煤层气含量和气体赋存状态起着重要作用。同时,储层压力也是水和气体从煤的裂隙中流向井筒的能量。降低煤储层压力,煤孔隙中吸附的气体开始解吸,向裂隙中扩散,在压力差作用下从裂隙向井筒流动。煤层气开采就是根据这一原理,通过排水降低储层压力而采气的。

现实中,原始煤储层压力差别较大。这是由于原始煤储层受多种因素的影响,如区域水文地质条件、埋深、气含量及地应力等。一般用压力梯度衡量压力的大小,为了在储层评价中统一方法和原则,将储层压力划分为3种类型(表2.25)。正常储层压力梯度应等于9.5~10.0 MPa/m,即基本上等于静水压力梯度;大于10.0 MPa/m为高压储层,小于9.5 MPa/m为低压储层。

表2.25 储层压力类型划分方案

(据张新民等,2002)

储层压力是通过试井而获得的。在我国用试井的方法获得的资料有限,在全国范围内仅收集到18个煤矿区的104个煤储层压力参数。这些数据在地域上的分布很不均衡,主要分布于华北和东北地区,华南和西南地区只有个别数据;而西北地区连一个数据也没有。

2.6.2 煤储层压力影响因素

2.6.2.1 煤层埋深对煤储层压力的影响

从单一钻孔中不同埋深不同煤层试井所获得的储层压力发现,随着煤储层埋深增加,煤储层压力增大。同一地区、不同钻孔储层压力也有规律可循,如淮南煤田CQ-2孔和CQ-3孔,这种现象在各煤层气井储层压力的测试结果中普遍存在。笔者对不同矿区内煤储层压力与埋深关系作图并建立关系式,用此关系式可推算该矿区内其他未知区的煤储层压力。主要矿区煤储层压力与埋深关系结果见图2.25至图2.29)。

图2.25 晋城矿区煤储层压力与埋深关系

(据张新民等,2002)

图2.26 阳泉、屯留矿区煤储层压力与埋深关系

(据张新民等,2002)

图2.27 离柳、韩城矿区煤储层压力与埋深关系

(据张新民等,2002)

图2.28 淮南矿区煤储层压力与埋深关系

(据张新民等,2002)

图2.29 红阳、铁法矿区煤储层压力与埋深关系

(据张新民等,2002)

为了对我国现已获得的煤储层压力资料充分应用,笔者将全国19个矿区已获得的储层压力,按平均值分为超压储层、低压储层和过低压储层3种类型,分别作图建立关系式(图2.30至图2.32)。

图2.30 高压储层压力与埋深关系

(据张新民等,2002)

图2.31 低压储层压力与埋深关系

(据张新民等,2002)

图2.32 过低压储层压力与埋深关系

(据张新民等,2002)

2.6.2.2 水文地质条件对煤储层压力的影响

静水水位的高低与区域水文地质条件有关,当煤储层所处的地表低于区域内静水水位时,在承压水力作用下,该地煤储层属超压储层。这样的储层一般位于向斜或复向斜内次一级的背斜部位。煤储层一般渗透性差,与外界水力联系差,补给径流不畅,地下水基本上处于滞流状态,为静储量弱含水层。

建议进一步阅读

张新民等.2002.中国煤层气地质与资源评价.北京:科学出版社,2~51



煤储层和煤层气的储存~

煤层气是一种自生自储的非常规天然气。与常规气藏不同,对于煤层气藏来讲,煤层既是煤层气的源岩,又是煤层气的储集层。
(一)煤储层的特征
与常规天然气储层相比,煤层气储层具自身的特殊性,煤层气的赋存与常规天然气也明显不同。表4-6列出了煤储层与常规砂岩储层的异同点。
表4-6常规砂岩储层和煤储层的比较表


1.煤的孔隙结构特征
煤层是一种双重孔隙介质,属裂隙-孔隙型储层。图4-11是煤储层孔隙结构的理想模型,割理(cleat)将煤分割成若干基质块,基质块中包含有大量的微小孔隙,是气体储存的主要空间,其渗透性很低;割理是煤中的次要孔隙系统,但却是煤层中流体(气体和水)渗流的主要通道。孔隙和割理都是煤储层研究的重要内容。

图4-11煤的双重孔隙系统图 (据Warren和Root,1963)

割理是指煤层中近于垂直层面的天然裂隙,其成因有内生和外生(构造成因)之分,规模有大有小,与煤田地质学上的“裂隙”为同义词。在煤层气地质领域,一般将“割理”和“裂隙”通用。
根据孔隙-割理的物理测试结果,通常将煤中孔隙(包含割理)的空间尺度划分为:1μm为大孔。
2.煤的割理系统
(1)割理的规模类型:割理的规模存在很大差异,小者数微米长,大者数米长。不同规模的割理在煤层中的发育程度相差较大。不同规模的割理,对气体的渗流起着不同的作用。张新民(2002)等按照割理的规模以及割理与煤层、煤岩类型及煤岩成分的关系对其进行了分类(表4-7)。
表4-7割理的规模类型及特征简述表


续表


(2)割理的三维几何形态:割理系统有互相大致垂直的两组,其中延伸长度大,且发育的一组叫面割理;被面割理横切的另一组叫端割理(图4-12)。

图4-12煤中割理系统图 (据张新民等,2002)

割理的长度在层面上可测量到,发育的面割理呈等间距分布,其长度变化范围很大(表4-7)。总体上,煤的光泽越亮、镜煤和亮煤越多、厚度越大,面割理越发育、割理高度越大。面割理高度小到几微米,大到几十厘米。
端割理一般与面割理是互相连通的。端割理的长度受面割理间距的控制,面割理间距越宽,端割理越长。端割理与面割理的高度受控因素相同,主要与煤岩类型和煤岩组分有关。割理的宽度与其规模有关。割理规模越大,宽度亦越大,变化范围一般为1μm至几厘米。
割理形态也是多姿多态的,在层面上主要有:①网状,这种割理连通性好,属极发育;②一组大致平行排列的面割理极发育,而端割理极少,这种割理属于发育,连通性属较好;③面割理呈短裂纹状或断续状,端割理少见,这种割理连通性差,属于较发育。剖面上,割理主要呈垂直于层理或微斜交层理平行排列。
3.煤层渗透率
宏观孔隙网络组成了连通性好的面割理和连通性稍差的端割理。面割理与端割理正交并垂直于煤层层面。割理是水和气流动的主要通道。被割理网络所包围的完整煤基质块体中的大部分孔隙为微孔隙,在这些煤中,流体主要通过扩散方式运移。故煤层的渗透性主要取决于煤层中割理的渗透性。根据火柴模型(thematchstickmodel)(Sawyer,1990;Harpalani和Chen,1997),割理的孔隙度(Φc)和渗透率(k)可近似为:

非常规油气资源

式中:a和b分别为割理的间距和一个割理孔径的宽度。
割理渗透性由割理密度(间距)、裂缝宽度和开启性、范围和连通性控制。这些因素又取决于煤级、煤质(灰分含量)、煤岩组分、煤层厚度、构造变形、煤化作用和原地压力(Ammosov和Eremin,1963;Close,1993;Laubach et al.,1998)。由于煤层具极强的可压缩性,原地压力可以影响储层渗透性和产量特征。通常,由于超压作用,煤层渗透性随着埋深的加大而减小。因此,美国大多数煤层气产自埋深小于1200m的煤层。煤阶对煤层的渗透性也有显著影响,由表4-8可看出,低煤阶煤层气藏的渗透率一般大于高煤阶煤层气藏。
表4-8世界部分中、低煤阶煤层气藏试井渗透率参数表


(据陈振宏,2007)
4.煤储层的吸附特征
(1)吸附理论:由于煤是一种多孔的固体,具有很大的内部表面积,因而具有吸附气体的能力。所谓吸附,是指气体以凝聚态或类液态被多孔介质所容纳的一种过程。吸附过程可分为物理吸附和化学吸附两种类型。物理吸附是由范德华力和静电力引起的,气体和固体之间的结合较微弱;物理吸附是快速的、可逆的。化学吸附是共价键引起的,气体和固体之间的结合力很强;化学吸附是缓慢的、不可逆的。
煤是一种优良的天然吸附剂,对各种气体具有很强的吸附能力,这是煤层气与常规储层储气机理不同的物质基础。煤吸附甲烷属物理吸附,理由主要是甲烷的吸附热比气化热低2~3倍,氮气和氢气的吸附也与甲烷一样,这表明煤对气体的吸附是无选择性的;大量的吸附试验证明,煤对甲烷等气体的吸附是快速的、可逆的。因此,可以用物理吸附模型来探讨煤吸附气体的机理。
对于物理吸附过程而言,吸附平衡是一个重要的概念。在一个封闭的系统里,固体颗粒表面上同时进行着吸附和解吸这样两种相反的过程。即一部分气体由于吸引力而被吸留在表面上而成吸附气相;被吸附住的气体分子,在热运动和振动的作用下,其动能增加到足以克服吸引力的束缚时,就会离开表面而重新进入游离气相。当这两种作用的速度相等(即单位时间内被固体颗粒表面吸留的气体分子数等于离开表面的分子数)时,在颗粒表面上的气体分子数目维持某一个定量,这时就称为吸附平衡。在平衡状态时,吸附剂所吸附的气体量随气体的温度、压力而变化。显然,这是一种动态平衡状态。即吸附量(V)是温度(t)和压力(p)的函数,可表示为

非常规油气资源

在上述函数关系式中,当温度一定时,称吸附等温线;当压力一定时,称吸附等压线。最常用的是吸附等温线,即在某一固定温度下,当达到吸附平衡时,吸附量(V)与游离气相压力(p)之间的关系曲线。在煤层气地质及勘探开发中,某一温度(通常为储层温度)下煤的吸附等温线对评价煤层的最大储气能力、预测煤层气含量、确定临界解吸压力、计算煤层气理论回收率等方面具有重要用途。
吸附等温线可以由实验室测试而获得。实际上实验测得的吸附等温线形状很多,大致可归纳为5种类型(图4-13)。图中纵坐标为吸附量a,横坐标p/p0为相对压力,p0是气体在吸附温度时的饱和蒸汽压,p是吸附平衡时气体的压力。等温线形态上的差异,反映了吸附剂与吸附质之间相互作用的差别。

图4-13物理吸附的5种类型等温线图 (据朱陟瑶等,1996)

第Ⅰ类吸附等温线的特征是,在较低相对压力时吸附量迅速增加,达到一定相对压力后吸附量趋于恒定的数值(极限吸附量)。极限吸附量有时表示单分子层饱和吸附量,对于微孔吸附剂则可能是将微孔充满的量。
第Ⅱ—Ⅴ类等温线是发生多分子层吸附和毛细凝结的结果。当吸附剂为非孔的或孔径很大可近似看作是非孔的时,吸附层数原则上可认为不受限制,等温线为Ⅱ、Ⅲ型的。当吸附剂为孔性的(不是微孔或不全是微孔的),吸附层数受孔大小限制,在p/p0→1时的吸附量近于将各种孔填满所需液态吸附剂的量,吸附等温线为Ⅳ、Ⅴ型的。Ⅱ和Ⅲ、Ⅳ和Ⅴ类型等温线的区别在于起始段曲线的斜率,Ⅱ和Ⅳ型在低压区曲线凸向吸附量轴,Ⅲ和Ⅴ型的是由小变大;在形状上,Ⅱ和Ⅳ型在低压区曲线凸向吸附量轴,Ⅲ和Ⅴ型则凸向压力轴。这些区别反映了吸附质与吸附剂表面作用的强弱。
从吸附等温线可以得到吸附质与吸附剂作用大小、吸附剂表面积、孔的大小及形状、孔径分布等信息。
由于煤储层的温度大都在10~50℃范围,远远高于甲烷的临界温度(-82.5712℃),煤的等温吸附试验一般也是在这一温度范围内进行的,因而不易发生多层吸附;煤是一种孔隙结构比较复杂、孔径分布不集中的多孔介质,不可能只在特定孔径的微孔结构中发生吸附,即吸附不是以微孔充填为主的过程(艾鲁尼,1992),故大多数煤的吸附等温线属Ⅰ类。
由于大多数煤的吸附等温线属Ⅰ类,故可认为煤吸附气体属于单分子层吸附,用Langmuir方程可以较好地描述绝大部分煤的吸附等温线。
Langrnuir(1916)从动力学的观点出发,提出了单分子层吸附理论,其基本假设条件是:①吸附平衡是动态平衡;②固体表面是均匀的;③被吸附分子间无相互作用力;④吸附作用仅形成单分子层。其数学表达式为

非常规油气资源

式中:V为吸附量(cm3/g);p为平衡气体压力(MPa);a为吸附常数,反映吸附剂(如煤的最大吸附能力,与温度、压力无关,而取决于吸附剂和吸附质的性质(m3/g);b为压力常数,取决于温度和吸附剂的性质(MPa-1)。
(2)煤对甲烷的吸附能力:张新民等(2002)从110余个煤样(来自从褐煤至无烟煤2号等9个煤级的煤层)的等温吸附实验结果得出在模拟地下煤储层条件的情况下,我国煤对甲烷的吸附能力(以最大吸附量,即Langmuir体积表征)较强,Langmuir体积(VL)值在11.25~51.81cm3/g之间变化(干燥无灰基)(不包括无烟煤1号)。其分布情况如图4-14所示,由于各煤级煤样的数量不均衡,各VL值区间的数据个数并不完全代表我国煤的VL值的分布趋势。

图4-14我国煤样Langmuir体积实测值分布直方图 (据张新民,2002)

(3)煤吸附能力的影响因素:煤的吸附能力受煤本身的物理、化学性质及煤体所处的温度、压力等条件的控制。实验结果表明,煤的吸附能力受煤变质程度、温度、水分含量影响较为显著。
煤变质程度对吸附能力的影响。煤对甲烷的吸附是一种发生在煤孔隙内表面上的物理过程,吸附能力受孔隙特征的影响。在煤变质过程中,孔隙在发生着变化,从而影响着煤的吸附能力。张新民等(2002)认为从褐煤至无烟煤2号煤的吸附能力是随着煤化作用的增加而增大(图4-15,图4-16和表4-9)。成岩作用阶段褐煤的吸附能力明显低于其他各变质阶段的煤,长焰煤至肥煤3个煤阶吸附量增加缓慢,焦煤之后,煤的吸附量开始快速增加,于无烟煤2号煤的吸附能力最强。

图4-1530℃等温吸附Langmuir体积与Rmax关系图


图4-16不同变质程度(Rmax)煤在45℃条件下的等温吸附曲线图

表4-9不同煤阶煤的吸附常数平均值(t=30℃,含平衡水分)


温度对煤吸附性能的影响。等温吸附实验一般采用的温度是30℃或煤储层温度。图4-17、图4-18为两个代表性的煤样分别在25℃、35℃、45℃和50℃条件下实验得出的等温吸附实验曲线。其中图4-17的煤样YQ四-15Rmax为2.69%,图3-18的煤样HJH-8Rmax为0.88%。由图4-17和图4-18可见,不同温度下煤的吸附能力有变化。总体的变化趋势是在压力不变的情况下,随着温度的升高,煤的吸附能力降低。用Langrnuir方程,根据各温度条件下获得的Langmuir体积和Langmuir压力,分别计算2MPa、8MPa、12MPa、20MPa压力下的吸附量;将同一压力不同温度的吸附量标绘在“温度-吸附量”坐标图中,即可用线性方程回归温度-吸附量经验公式,如图4-19和图4-20所示。

图4-17YQ四-15煤不同温度下的等温吸附实验曲线图 (据张新民,2002)


图4-18HJH-8煤不同温度下的等温吸附实验曲线图 (据张新民,2002)


图4-19YQ四-15煤在不同压力下温度与含气量关系图


图4-20HJH-8煤在不同压力下温度与含气量关系图

压力对煤吸附性能的影响。在其他条件不变时,随着压力的升高煤对甲烷的吸附能力增大(图4-21)。

图4-21随着压力的增大煤对甲烷的吸附能力也增大

图4-21a.在较高的温度下(虚线),煤中储存较少甲烷;当生气量大于煤的吸附能力时就发生运移;图4-21b.随着盆地的抬升冷却生气量降低(实线),从而导致煤层对甲烷不饱和。大气水中次生生物气的生成和热成因与生物成因气的运移可使煤层重新饱含甲烷。当煤层饱和时,解吸发生的压力就较高,则煤层气解吸只需较少的降压(排水),甲烷的产量也会较高。
水分对煤吸附性能的影响。张新民等(2002)试验表明,随着煤中水分的增加,Langmuri体积呈减小趋势,这主要是煤的内表面上可供甲烷气体分子“滞留”的有效吸附点位是一定的,煤中水分越高,可能占据的有效吸附点位就越多,相对留给甲烷分子“滞留”的有效点位就会减少,煤的饱和吸附量就会降低。
5.煤储层压力特征
煤储层压力是指煤层孔隙中的流体(包括气体和水)压力。煤储层压力对煤层气含量、气体赋存状态起着重要作用。同时,储层压力也是水和气体从煤的裂隙中流向井筒的能量。当降低煤储层压力,煤孔隙中吸附的气体开始解吸,向裂隙中扩散,在压力差作用下从裂隙向井筒流动。煤层气开采就是根据这一原理,通过排水降低储层压力而采气的。
实际上,原始煤储层压力差别较大。这是由于它受多种因素的影响,如区域水文地质条件、埋深、含气量、地应力等都可对煤储层压力造成影响。一般用压力梯度去衡量储层压力的大小,将储层压力划分为三种类型(表4-10)。正常储层压力应等于9.5~10.0kPa/m,即基本上等于静水压力梯度;大于10.0kPa/m为高压储层,小于9.5kPa/m为低压储层。
表4-10储层压力类型划分方案表


(二)煤层气的储存特征
一般说来,煤层气以3种状态存在于煤层之中:①吸附在煤孔隙的内表面上;②以游离态分布于煤的孔隙中,其中大部分存在于各类裂隙之中;③溶解于煤层内的地下水中。在煤化作用过程中生成的气体,首先满足吸附,然后是溶解和游离析出,在一定的温度和压力条件下,这3种状态的气体处于统一的动态平衡体系中。
上述这3种状态主要是针对甲烷而言,煤中的各种重烃组分是处于气态还是液态,这取决于煤储层的温度和气体压力。在当前开采深度和气体压力范围内,乙烷是气态,其他重烃呈液态。另外,除上述3种状态外,煤层中的气体还有可能以气体水合物晶体的形式存在,其条件是低温高压,如温度在0℃时,形成甲烷(CH4)水合物所需的压力为2.65MPa;温度在10℃时,则所需压力为7.87MPa,而在这样的条件只有在深海或永久冻土地带才能出现,在我国煤田内一般是不存在的。由于煤层气成分中乙烷以上的重烃含量很小,所以煤层中烃类物质的相态绝大部分为气态。
1.吸附气
煤层区别于常规天然气储层的主要特征是,大部分气体以吸附的方式储存于煤层中。经测算,吸附状态的气占煤中气体总量的80%~95%以上,具体比例取决于煤的变质程度、埋藏深度等因素(张新民等,1991)。这主要由于煤是一种多孔介质,煤中的孔隙大部分为直径小于50nm的微孔,因而使煤具有很大的内表面积,对气体分子产生很大的表面吸引力,所以具有很强的储气能力。在我国,中、高变质程度的烟煤和无烟煤中实测煤层气含量(干燥无灰基)为10~30cm3/g,最高可达36cm3/g,甚至更高;据测算,煤层的储气能力是同体积常规砂岩储气能力的2~3倍,如图4-22所示。
煤中吸附气含量,可以用直接法,通过煤样解吸试验得到;也可用以用间接法,通过Langmuir方程计算求得。
2.游离气
在气饱和的情况下,煤的孔隙和裂隙中充满着处于游离状态的气体。这部分气服从一般气体状态方程,由于甲烷分子的自由热运动,因而显现出气体压力。游离气的含量取决于煤的孔隙(裂隙)体积、温度、气体压力和甲烷的压缩系数,即

非常规油气资源

式中:Qy为游离气含量(cm3/g);Φ为单位质量煤的孔隙体积(cm3/g);p为气体压力(MPa);K为甲烷的压缩系数(MPa-1)。

图4-22煤与砂岩储气能力比较图 (据Kuuskvaa et al.,1989)

煤中游离气的含量不大。据前苏联科学院艾鲁尼等人的资料,中等变质程度的煤,在埋深300~1200m的范围内,其游离气仅占总含气量的5%~12%。
3.水溶气
水对甲烷有一定的溶解能力。根据煤炭科学研究总院西安分院在20世纪80年代后期进行的系统甲烷水溶试验的结果(表4-11),一般每升水可溶解零点几升到几升甲烷。与其他气体相比,甲烷在水中的溶解度是较小的。例如,在0℃和常压下,甲烷在水中的溶解度为0.055L/L,而相同条件下乙烷在水中的溶解度为0.098L/L,二氧化碳为1.713L/L,硫化氢为2.67L/L。可以看出,甲烷在水中的溶解度仅为二氧化碳的1/30,是相当低的。尽管如此,当溶解度低的甲烷溶于大量的地下水中,就会有巨大的气体从气藏中运移出去,引起甲烷的散失。在自然界,煤层常常为含水层,当储层压力低到足以使气体能够从煤中解吸出来时,甲烷会因地下水的运动而从煤层中运移出去。
表4-11不同温度、压力和不同矿化度下,水对甲烷的溶解度表


续表


(据张新民等,1991)
(三)煤中气体的流动
在自然界的原始状态下,煤层中的气体以承压状态存在着,气体处于平衡状态,可以将其看作是不发生流动的。但是,当人为活动影响时,如井下采掘活动,气井排水降压等,由于破坏了原始的压力平衡状态,会引起煤层中气体的流动。煤中气体穿过煤层孔隙介质的流动机制可以描述为3个相联系的过程(图4-23),即:
首先,由于压力降低使气体从煤基质孔隙的内表面上发生解吸;其次,穿过基质和微孔扩散到裂隙中,扩散作用是由于在基质与裂隙间存在的浓度差引起的;最后,在压力差作用下以达西流的方式在裂隙中渗流。这3种作用是一个互为前提并且连续进行的统一过程,不能割裂开来单独进行。

图4-23煤中气体流动的3个阶段图

1.解吸
当储层压力下降到低于临界解吸压力时,气体分子开始解吸,并遵循给定介质的等温吸附过程。解吸过程与时间有关。解吸过程进行的快慢可以用解吸时间来定性表示。所谓解吸时间,是指总吸附气量(包括残留气)的63.2%释放出来所需要的时间,一般用天或小时来表示。为使气体从不饱和气的煤层中开始解吸并产出,必须将地层压力降低到饱和点以下(图4-24)。

非常规油气资源

2.扩散流
气体穿过煤基质和微孔的扩散流动是由于体积扩散(分子与分子间的相互作用)、克努森(Knudson)扩散(分子与孔壁间的相互作用)和表面扩散(吸附的类液体状甲烷薄膜沿微孔隙壁的转移)共同作用的结果。
当孔隙直径大于气体分子的平均自由运动路程时,以体积扩散为主;当孔隙相对于气体分子的平均自由运动路程较小时,以克努森扩散为主。表面扩散受气体分子与孔壁表面之间的持续碰撞作用的控制,在这些表面上气体以吸附状态被传输。在表面扩散中一旦发生碰撞,气体分子就立即被吸附在孔壁上。对整个运移过程来说,表面扩散的作用是不大的。
各种类型的扩散流动都是气体分子随机运动的结果。图4-25可用来说明煤基质中甲烷扩散的过程。由于气体分子的随机运动,可以假定试图穿过某一虚拟内表面发生运动的两边气体的百分率相同。这样,由于靠近基质中心一侧(左)的甲烷浓度大于靠近割理一侧(右),所以试图从左向右穿越的分子数目就大于试图从右向左穿越的分子数目,于是总的运移方向是从左向右,即从煤基质块向割理流动。

图4-25煤基质中甲烷扩散的过程图

3.达西流
一般认为,在中孔(直径大于100nm)以上的孔隙和裂隙中,气体的流动为渗透,并且可能存在两种方式,即层流和紊流。由于煤层内孔隙的大小、形态、曲率非常复杂,具有明显的不均匀性,因此为了简化煤层中气体流动状态,通常认为煤层中气体流动属于层流渗透,且服从达西(Darcy)定律。即流体的流速v与其压力梯度成正比。它的简单表达式为:

非常规油气资源

式中:k为煤层的渗透率(10-3μm2);μ为流体的绝对黏度,对于甲烷,μ=1.08×10-5Pa·s; 为流体的压力梯度(Pa/m)。
(四)煤储层箱和含气特征
1.煤储层箱
各个盆地中煤储层的性质不同,具有较好油气通道和甜点的区域只占不到盆地生产区面积的10%。煤层气的经济可采要求众多地质要素聚集在一个适当的时间框架中,而且还须有可操作性及合适的环境。煤层气勘探开发的关键是识别煤储层箱。煤储层箱是指具有相似储层属性的封隔体,包括含气量、渗透率、水和气组分等。
2.煤层含气性特征
煤层含气性指煤层气含量。煤层气含量是指单位重量煤中所含煤层气的体积,单位为m3/t。
煤层气含量和煤层厚度有关,煤层厚度越大,稳定性越好,对煤层气的生成量和资源量规模起决定性作用。煤是煤层气的母质,在同等煤级条件下,煤层越厚生气量越大,煤层气丰度也越高。
煤层集生气层与储集层于一体,故煤的生气量与储集性能对煤的含气量有重要影响。煤层的生气量与成煤物质、煤变质程度有关;储气能力与煤的变质程度、煤岩成分、气体压力等因素有关,而压力又与煤储层的埋深、区域水文地质、气生成量有关;除煤层自身条件外,煤储层的保存条件对煤层气含量也有重要影响。这些诸多的影响因素以及复杂的相互配置关系造成煤层气含量的差异变化。而这些因素又可归结为4个方面:
(1)煤变质对煤层气含量的影响:煤变质对煤层气含量的影响,主要是通过对煤的生气量和煤的吸附能力的控制作用而体现的。研究表明,煤的生气量随着煤变质程度的增加而增大,且随着煤变质程度的提高,煤对甲烷的吸附能力逐渐增大。这说明在相同的保存条件和煤储层压力条件下,变质程度愈高,煤中吸附的甲烷愈多,即煤层气含量越高。
(2)煤储层埋藏深度对气含量的影响:据Langmuir吸附理论,随着压力的增大,煤对甲烷的吸附量呈非线性增加。随着埋藏深度的增大,煤层的压力增大,煤对甲烷的吸附能力增强,煤层含气量增大。
(3)水文地质与煤层气含量的关系:水动力对煤层气具有水力封闭和水力驱替、运移的双重作用。水力封闭作用有利于煤层气的保存,而水力驱替、运移作用则引起煤层气的逸散及在新条件下的聚集(常规圈闭)。一般讲,地下水压力大,煤层气含量高,反之则低;地下水的强径流带煤层气含量低,而滞流区则含量高。
(4)聚煤环境与煤层气含量的关系:含煤地层沉积环境主要有两类,即海陆过渡相沉积环境和陆相沉积环境。海陆过渡相形成的煤层,煤的还原程度高,镜质组含量通常较高,水体中的藻类、浮游动物往往残余成煤,形成富含烃类的沥青质体,构成亮褐煤和烟煤中微粒体的前身。在陆相沉积环境中形成的煤惰质组含量较高,惰质组由于炭化作用而变的惰性,富含碳,在煤化作用过程中挥发性物质少,生气量也少;而且煤层中藻类、浮游生物少见。由于镜质组的生气量大于惰质组,沥青质体生烃量比镜质组和壳质组高;因此,海陆交互沉积环境中形成的煤层的生气量、储气能力均大于陆相沉积环境中形成的煤层。

黄维安1 邱正松1 王彦祺2 马永乐1 钟汉毅1 白雪飞1
(1.中国石油大学 石油工程学院,山东青岛 266555; 2.华东石油局工程技术设计研究院,江苏南京 210031)
基金项目:国家自然科学基金“页岩气储层保护机理及方法研究”(编号41072094);中国石油大学自主创新“煤层气储层保护技 术及评价新方法研究”(编号10CX04010A )
作者简介:黄维安,男,副教授,从事油气井化学工程领域研究。E-mail:masterhuang1997@163.com。
摘 要:做好煤层气储层保护工作,对于有效开发、利用煤层气,弥补我国石油、天然气供应的不足,降低温室气体排放,减少环境污染以及预防矿难事故频发,具有重要意义。本文首先采用X射线衍射、扫描 电镜、泥页岩膨胀实验、页岩分散实验、薄片分析、压汞分析、润湿性测试和敏感性评价等手段分析了山西 沁水盆地煤层气储层的损害机理。在此基础上进行了针对性的保护对策研究,优选出了表面润湿性改善剂 SD -905,水敏性抑制剂SMYZ-2,并最终研制出了山西沁水盆地煤层气储层的钻开液:0.4% SD-905+ 0.5%SMYZ-2溶液,其对煤层气储层岩样湿态下的渗透率损害最低。
关键词:煤层气;损害机理;储层保护;表面润湿性;钻开液
Study on Damage Mechanism and Protection Counter-measure for Coalbed Methane
Huang Weian1,Qiu Zhengsong1,Wang Yanqi2,Ma Yongle1,Zhong Hanyi1,Bai Xuefei1
(1.School of Petroleum Engineering,China University of Petroleum,Qingdao 266555,China; 2.Research institute of engineering techniques and design,Petroleum Bureau of East China,Nanjing 210031,China)
Abstract:A good protection of coalbed methane reservoir can facilitate its exploitation and usage of,cover the shortage of oil and natural gas supply for China,help cut greenhouse gas emissions,phase down environmental pollution and prevent mine accidents from happening.Firstly,damage mechanisms of coalbed methane reservoir in Qinshui basin of Shanxi province were comprehensively analyzed by X-ray diffraction(XRD),Scanning Electron Microscope(SEM),liner swelling test and hot rolling dispersion experiments,thin-section analysis,mercury penetration analysis,wettability measurement and evaluation of sensitivity.Based on this work,pertinent protection counter-measure study were conducted,the surface wettability modifier SD-905 and water sensitivity inhibitor SMYZ-2 were selected out,and then drilling fluid for coalbed methane reservoir in Qinshui basin of Shanxi province composed of 0.4% SD-905 +0.5% SMYZ-2 was developed,which has minimal damage to permeability of ingredient under hygrometric state.
Key words:coalbed methane;reservoir protection;surface wettability;drilling fluid for reservoir
引言
煤层气(Coalbed Methane,CBM)是储集在煤层孔隙中的天然气。我国煤层气资源丰富、位居世界 第三,预计为31.46×1012m3,相当于450亿吨标煤、350亿吨标油,与陆上常规天然气资源量相 当[1,2]。煤层气藏自生自储于煤层中,不同于常规天然气需要经过大规模运移才形成储集层,与常规砂 岩、碳酸盐岩储层有很大差别,它具有高吸附性、低渗透性,且易受压缩、破碎等[3~5]。这些特性决 定了在煤层气钻井过程中,煤层受到的伤害远大于常规储层,而煤层气储层伤害直接影响到煤层气的解 吸、扩散、运移及后期排采[6~8]。因此,煤层气储层伤害问题值得重点关注。本文针对山西沁水盆地 煤层气钻探中存在的储层保护和井壁稳定技术难题,开展煤层气储层损害机理及保护对策研究。
1 煤层气储层岩石组成及结构构造
山西组(P1s)地层厚度为34.00~63.80m,平均厚度48.90m左右,与下伏太原组整合接触。下部 以灰、灰黑、深灰、灰黑和黑色泥岩、炭质泥岩、粉砂岩、砂质泥岩为主。底部为K7砂岩,其为厚层 状中、细粒砂岩,厚度为0~6.07m,平均厚度1.48m。主要发育有2、3号煤层。其中2号煤层为全区 稳定可采煤层,煤层气井深936.2~941.1m,视厚4.9m。定量计算该层灰分含量较低,为5.59%,固 定碳含量较高,为86.22%,含气量为7.83m3/t,孔渗性较差,综合分析该层为本井厚度最大、物性最 好、含气量最高的煤层。此外其泥质含量相对较高,为炭质泥岩夹矸。3号煤层为较稳定局部可采煤 层,上部为中细粒砂岩、粉砂岩、砂质泥岩与泥岩互层,含不稳定的1号煤层。
2 煤层气储层损害机理研究
2.1 煤岩组成分析
选取塔河油田复杂层位岩样,利用D/max-ⅢA X-射线衍射仪分析进行矿物组成分析。
表1 煤岩X-射线衍射全岩矿物组成分析


5号和6号样品分别含有3%和2%的Tobelite(NH4Al3Si3O10OH),其含量没有计算在表内。
从表1看出,山西沁水盆地煤岩中主要成分为炭,其它依次为石英、方解石、粘土矿物和黄铁矿,但各岩样含量差异较大。
从表2看出,山西沁水盆地煤岩中的粘土矿物主要为高岭石和绿泥石,H3井708.73~708.91m含 有不同程度伊/蒙混层,混层中间层比不高,为20%。
表2 煤岩X-射线衍射粘土矿物相对含量



图1 煤岩水化分散性能测试结果


图2 煤岩水化膨胀性能测试结果

2.2 煤岩理化性能分析 从图1看出,山西沁水盆地煤岩的水化分散回收率均很高,达93%以上,相对而言,H3井 708.73~708.91m煤岩的回收率较低。
从图2看出,山西沁水盆地煤岩膨胀率均很小,属弱/难水化膨胀性岩样,相对而言,H3井 708.73~708.91m岩样膨胀率较高。
2.3 煤岩微观结构及孔渗性质分析
(1)微观结构分析。从图3看出,H2井504.55m岩样微裂缝发育,趋向性较好,夹杂有石英和粘 土矿物。
(2)孔渗结构分析。从图4和5看出,H2井502.89m与504.55m煤岩均存在割理,502.89m煤岩 还存在“蚀孔”,504.55m煤岩的割理连通性较好。
测得(图6,图7)H2井502.89m煤岩的孔隙度为5.394%,最大孔喉半径10.4385μm,孔喉半径 平均值2.3174μm,最大汞饱和度为29.25%,退汞效率为61.778%。测试结果表明,H2井502.89m煤 岩为典型的低孔隙度、裂缝性储层,对渗透率具有贡献的孔径分布在10.43~2.5μm之间。
2.4 煤岩润湿性测试
实验测得(图8)H2井502.89m煤岩对去离子水和标准盐水的平均接触角分别为62.63°和 65.71°,其属于弱亲水性,且对标准盐水的润湿性较去离子水差。原因是H2井502.89m煤岩测试点主 要为灰暗的惰质组。通常,灰暗的惰质组处测得接触角小于光亮的镜质组处所测得的接触角。

图3 H2井504.55m煤岩扫描电镜照片


图4 H2井502.89m煤岩薄片镜下照片


图5 H2井504.55m煤岩薄片镜下照片


图6 和2井502.89m煤岩压汞曲线

2.5 煤岩应力敏感性分析
选取H2井502.89m岩样,保持供气压力不变,考察 了围压对渗透率的影响。图9结果表明,随着围压增大,即加载在H2井502.89m煤岩上净应力增大,岩样渗透 率降低,并且随着围压降低,渗透率恢复值低于加压过 程中对应净应力下的,表明煤岩岩样存在应力敏感性。
综合以上分析表明,山西沁水盆地煤层气储层典型 的低孔隙度、裂缝性储层,其损害机理可以概括为:由 于含有粘土矿物、且微裂缝发育,存在潜在水敏性损害; 煤岩表面属于弱亲水性,存在潜在的水锁损害;存在较强的应力敏感性损害。

图7 H2井502.89m煤岩汞饱和度柱状图及渗透率贡献值累积曲线


图8 H2井502.89m煤岩润湿性(接触角)测试结果


图9 围压对煤岩渗透率的影响

3 煤层气储层保护措施研究
针对山西沁水盆地煤层气储层的损害机理,本文采取了加强抑制和改善表面润湿性的煤层气保护钻 井液技术措施。
3.1 表面润湿性改善剂优选
从图10看出,经0.4%SD-905溶液浸泡后,H2井502.89m煤岩亲水性增强,表现为强亲水性,明显降低水锁效应,减小水相对煤岩渗透率的损害,有利于煤层气储层保护。

图10 H2井502.89m煤岩润湿性测试结果(0.4%SD-905溶液浸泡后)

3.2 水敏性抑制剂优选
从图11看出,H2井502.89m煤岩在自来水中的膨胀较5% SMYZ-1和2% SMYZ-2溶液中高,5% SMYZ-1和2% SMYZ-2溶液能使H2井502.89m煤岩“收缩”,膨胀率为负,相对而言,SMYZ- 2抑制水敏性效果更突出。

图11 水敏性抑制剂优选结果

3.3 外来流体对煤层气储层渗透率损害性评价
采用纯度为99.999%的高纯氮气进行岩心流动实验,评价外来流体对煤岩渗透率的伤害性。测试 了外来流体作用前岩心的高纯氮气气测渗透率K0、外来流体作用后高纯氮气通过湿岩心的气测渗透率 K01,以及外来流体作用后高纯氮气通过干岩心(60℃干燥)的气测渗透率K02。
(1)分析山西沁水盆地煤层气储层岩样对0.05%XC溶液的敏感性。
(2)分析山西沁水盆地煤层气储层岩样对0.4%SD-905 +5%SMYZ-1的敏感性。
(3)分析山西沁水盆地煤层气储层岩样对0.4%SD-905 +2%SMYZ-2的敏感性。
(4)分析山西沁水盆地煤层气储层岩样对0.4%SD-905 +0.5%SMYZ-2的敏感性。
(5)分析山西沁水盆地煤层储层岩样对去离子水的敏感性。
从表3测试结果看出,各种外来流体都对岩心渗透率均有不同程度的损害,其中0.05%的XC 溶液对岩心渗透率的损害达到100%;0.4%SD-905 +5%SMYZ-1溶液对岩心渗透率的损害也均在 90%以上;0.4%SD-905 +2%SMYZ-2溶液与去离子水对岩心渗透率的损害约60%;对煤岩渗透 率损害最低的是0.4%SD-905+0.5%SMYZ-2溶液,并且岩样低温干燥后的渗透率恢复值达到 124.1%。综合上述实验结果,推荐使用0.4%SD-905+0.5%SMYZ-2溶液钻开山西沁水盆地煤层 气储层。
表3 外来流体对煤岩渗透率伤害性评价结果


4 结论
(1)山西沁水盆地煤层气储层为典型的低孔隙度、裂缝性储层,其损害机理主要为:含有粘土矿 物、且微裂缝发育,存在潜在水敏性损害;煤岩表面属于弱亲水性,存在潜在的水锁损害;存在较强的 应力敏感性损害。
(2)SD-905能改善煤层气储层的表面润湿性,SMYZ-2能煤岩膨胀率、甚至“收缩”,释放出孔 隙;0.4%SD-905 +0.5%SMYZ-2溶液对煤层气储层岩样湿态下的渗透率损害最低,推荐为山西沁水 盆地煤层气储层的钻开液。
参考文献
[1]Kim A.G.Estimating methane content of bituminous coal from adsorption data[R].U.S.Bureau of Mines,1977,RI8245.
[2]雷群,王红岩,赵群,等.国内外非常规油气资源勘探开发现状及建议[J].天然气工业,2008,28(12):7~10.
[3]Eddy C.E.,Rightmire,et al.Relationship of methane content of coal rank and depth:Theoretical Vs Observed[C].SPE,1982,10800.
[4]王忠勤.煤层气储层保护技术研究[J].中国煤田地质,2001,13(3):29~30.
[5]黄质强,蒋光忠,郑双进,等.煤层气储层保护钻井关键技术研究[J].石油天然气学报,2010,32(6):116~118.
[6]郑军,贺承祖,冯文光等.表面活性剂对煤层储气层损害作用研究[J].油田化学,2005,22(3):258~261.
[7]Clark J.Cera:Natural gas poised to overtake oil use by 2025[J].Oil &Gas Journal,2004,102(9):20-21.
[8]Meng L.,Luke D.Connell.Dual Porosity Processes in Coal Seam Reservoirs:The Effect of Heterogeneity of Coal Matirces
[C].SPE,2010,133100.

相关要点总结:

15191359600:煤层气藏形成条件
厉呼答:对西北地区煤相的详细研究表明,该地区普遍发育4种类型煤相:即干燥泥炭沼泽相、森林泥炭沼泽相、活水泥炭沼泽相和开阔水体沼泽相,但在不同层位(纵向上)和不同地区(平面上)煤相存在明显差异,并发生规律性变化,且煤相纵横向上变化导致煤岩组成发生变化,进而在一定程度上影响煤储层物性及煤层气吸附量。 森林泥炭沼泽相...

15191359600:煤层气地质特征及成藏条件
厉呼答:但原位吸附气体的能力相对较低;第二,深部煤储层含气量显著高于浅部煤储层,煤层气赋存状态在浅部煤储层中几乎为吸附气,在深部煤储层中吸附气、游离气、溶解气达到动态平衡,游离气的重要性随埋深而增大;第三,构造高点煤储层气饱和度高,储集气量大,游离气、吸附气同时富集,构造圈闭对深部煤层气成藏具有重大...

15191359600:煤储层的特征
厉呼答:与常规天然气储层相比,煤层气储层具自身的特殊性,煤层气的赋存与常规天然气也明显不同。表5.4列出了煤储层与常规砂岩储层的异同点。表5.4 常规砂岩储层和煤储层的比较表 续表 (1)煤的孔隙结构特征 煤层是一种双重孔隙介质,属裂隙—孔隙型储层。割理将煤分割成若干基质块,基质块中包含有...

15191359600:煤层气地质特征及成藏条件
厉呼答:(2)煤储层割理和气孔发育,构造轴部次生裂隙发育,煤层气产出条件有利 本区煤岩以光亮型、半光亮型为主,镜质组含量高,以中变质的肥煤、焦煤为主,变质程度适当,故煤层割理发育,有利地区割理密集呈网状,连通较好。据不完全统计,煤层发育2组割理:一组为面割理,密度7~25条/5cm,裂口宽0.01...

15191359600:煤层气藏的类型
厉呼答:如在吴堡气区储层上倾方向的渗透层被高矿化水所饱和,构成了深部烃类向上运移的隔挡层,并形成圈闭,且主要以水溶甲烷的圈闭形式,在鼻状构造北翼,产层埋藏浅,气组分以甲烷为主(CH4在90%左右),气水同时产出,反映了水溶气特征。4.构造-水力复合圈闭气藏 该类型煤层气藏由构造和水压共同作用...

15191359600:煤储层特征
厉呼答:煤基质孔隙孔径小,数量多,是孔内表面积的主要贡献者,为煤层气的储集提供了充足的空间,煤储层的裂隙系统是煤中流体渗透的主要通道。煤基质的孔径分类,有两种划分方案:第一种是Ходот(1966)的分类方案,该方案是在工业吸附剂的基础上提出的,主要依据孔径与气体分子相互作用的特征按孔径大小...

15191359600:煤层气地质特征及成藏条件
厉呼答:褐煤的累积煤气发生率在38m3/t以上,气煤的累积煤气发生率可达到122m3/t(叶建平等,1998)。可见,虽然吐哈盆地煤的变质程度较低,但其生气量仍是可观的。 表6-15 吐鲁番和哈密盆地深部煤层含气性预测成果表 2.煤层煤阶低,孔隙度较大;镜质组含量较高,煤储层渗透性好 煤层大多煤阶低,孔隙度较大。大孔和中...

15191359600:煤层气地质特征及成藏条件
厉呼答:2.煤储层吸附量高、可解吸率高,煤层割理发育,构造裂缝适中 由于镜质组含量高,煤演化程度适中,吸附量高(大于15m3/t)、可解吸率高(大于70%)。煤层割理、内生裂隙发育,割理组呈网状、树枝状分布,连通性好,构造裂缝适中。 3.煤层气盖层封闭性能良好,处于滞流带承压水封堵环境,煤层气保存条件有利 本区各式向斜均...

15191359600:煤层气成藏特征及高产富集条件
厉呼答:位于构造低部位下斜坡或向斜区,煤层埋藏深,在压实作用下煤储层物性差,尽管有的含气量大,但开采中可解吸率低,一般不作为勘探的重点区。 从以上可见,并非有煤均可勘探煤层气,往往一个盆地煤层气高产富集区仅分布于局部,其区带分布大小与地质因素有关。 二、煤层气藏类型多样 煤层气有多种成藏模式,根据中国煤层...

15191359600:煤层气形成与分布
厉呼答:水动力封堵边界是最常见的煤层气边界,几乎所有的煤层气都存在。以地下水沿煤层露头补给、向深部运移、形成一定高度的地下水水位、促使煤层气在滞留区富集为主要表现形式。水动力封堵的机理为:要使储层内保存一定量的煤层气,就必须具备一定的储层压力,即地下水静水位面(对应于储层压力)具有一定的高程。可见,水动力...

(编辑:本站网友)
相关推荐
关于我们 | 客户服务 | 服务条款 | 联系我们 | 免责声明 | 网站地图
@ 百韵网