百韵网 >>  正文

主机板、显示卡架构及动作原理

来源:www.baiyundou.net   日期:较早时间
这本书你可以看下http://www.douban.com/subject/1533070/

主板又名主机板、母板、系统板等。
在一台微型计算机里,主板上安装了计算机的主要电路系统,并具有扩展槽和插有各种插件。计算机的质量与主板的设计和工艺有极大的关系。所以从计算机诞生开始,各厂家和用户都十分重视主板的体系结构和加工水平。了解主板的特性及使用情况,对购机、装机、用机都是极有价值的。下面我们分别介绍当前流行的Pentium级主板和Pentium Ⅱ 级主板的主要技术特性和使用的有关问题。

主板上的新技术
计算机行业的技术更新无疑是最频繁和最迅速的,一种主板从投入市场到淘汰一般只有1~2年的时间。目前市场中销售的主板普遍使用了一些常见的新技术,并具有一些共同的特点。主要是:采用Flash BIOS,用户只需软件即可升级;采用同步突发式(PB Cache)二级高速缓存,与以前的异步缓存相比,可提高速度和效率;主板集成两个串口、一个并口和一个软驱接口;主板集成2个通道的增强型(EIDE)硬盘接口,用于连接硬盘、IDE光驱、磁带机等设备。有些主板还设有PS/2鼠标口、通用串行总线(USB)、DMI资源管理等。下面对一些典型技术作一介绍。

支持MMX
CPU技术的更新和主板产品的更新换代是密切相关的。一旦有新一代的CPU问世,就会有新的芯片组(Chip Set)与之配合,当然也需要新一代的主板支持。目前最热门的话题当然是MMX技术。
为了更好地和MMX CPU配合,Intel公司推出了430TX芯片组。该芯片组在集成度与速度上进行了优化,支持168线同步内存,采用ACPI(高级配置电源接口)方式的电源管理以便应用于笔记本电脑,另外TX芯片组采用Ultra DMA方式管理IDE设备,除兼容老的Mode 4的硬盘外,对于新一代ATAPI 3硬盘,可提供高达33MB/Sec的传输速率,可与SCSI硬盘媲美。目前,基于Intel 430TX芯片组的主板大量上市,主要有技嘉、华硕、微星等厂家的产品。
在高能奔腾级产品,Intel公司也在加紧把MMX技术应用到Pentium Pro处理器中去,构成1998年高档微机的主流CPU芯片,原代号为Klamath的Pentium Ⅱ。
Pentium Ⅱ 一改原来的陶瓷封装形式而采用CPU插卡结构,CPU卡一面作为CPU主体及散热片,另一面可集成CPU的二级缓存。在1998年的今天,Pentium Ⅱ CPU已成为主流芯片大量上市。相应的基于支持芯片组440LX、440BX等的主板也大量面市。

ATX结构
ATX乃ATeXternal的缩写,是由Intel公司首创以提升微机主板整体性能的新技术。与以前的Baby/MiniAT主板相比,ATX板的优点简述于下。后面将对AT主板和ATX主板进行较详细比较。

(1)ATX的主板看上去像是旋转了90度的Baby AT,但它却使输入/输出接口及其连接器可直接做在主板上。
(2)在ATX主板中,CPU和内存插槽均远离扩展槽,所有扩展槽都可以插全长的扩展卡,内存的插拔也很方便。此外,因CPU靠近电源,电源风扇也可给CPU散热。
(3)在ATX主板上,软硬盘连接器正好位于软硬盘支架附近,因此只需较短的连线就可连接它们。并在主板上集成了串并口和PS/2鼠标键盘接口。
(4)ATX主板还对整机的电源做了改进,使其更节省能源。新的ATX电源提供3V电压,以适应新的CPU需要。
另外,ATX主板上还可提供Soft Power(软电源开关)功能,即由主板控制电源开关,这样可实现遥控开机和Win95自动关机等功能。但ATX主板需用专门的ATX机箱。值得一提的是,有些主板厂家为方便用户使用和升级,在BABY-AT主板上做了普通和ATX两种电源接口,使用户不必使用ATX机箱,在普通机箱上加上ATX电源即可享有ATX电源的功能。

通用串行总线(USB)接口技术
通用串行总线USB(Universal Serial Bus)是Intel和其它一些公司共同倡导的一种新型接口标准。随着计算机应用的发展,外设越来越多,调制解调器、扫描仪、磁带机等各种各样的外设使计算机本身所带的有限接口显得异常紧张。通用串行总线USB可以简单地解决这一问题。按目前的工业标准,它是一种四芯的串行通信设备接口,可以连接多达128个外围设备,并支持即插即用。主要用作计算机与外设之间的连接。通信速率可达12MB/s,比传统的RS-233C串行通信接口要快得多。今后USB总线的可用速率还会提高。采用USB总线可以把键盘、鼠标器、打印机、扫描仪、调制解调器、网络(HUB)等设备按统一的接口方式连接起来,使用户安装这些设备变得更简单。
采用USB总线后,计算机后面的许多接口都可以免去,而剩下一两个统一的USB接口。使用USB总线要求有USB驱动程序来配合各种USB设备,而USB驱动程序的基础部分一般是放在BIOS中的。现在市场上的许多奔腾类主板已经能够支持USB总线,并具有USB接口,但多数主板却没有配USB接口线,BIOS中可能也没有USB总线的驱动程序。所以大家不能仅从主板的说明书看到有USB接口,就以为你的主板今后可以使用USB总线。目前,符合USB标准的硬盘已经问世,不久将来还会出现更多带有USB的外设。在国内市场上支持USB接口的主板有大众、联讯、华硕等公司的产品。

桌面管理界面DMI技术
DMI,即Desktop Management Interface桌面管理接口,是用来让系统保存自身及外围设备相关资料的应用程序。通过DMI可以在操作系统级查询系统配置信息(不用进入BIOS),包括CPU、内存、I/O扩充插槽等。DMI可以将上述资料存储在BIOS中的特定位置,也可以利用DMI对资料库中系统配置情况作出修改以适应不同环境的系统需求(不必进入BIOS)。
主板上的BIOS会尽可能地收集系统信息,将它存在主板上Flash EPROM中一个4K的小块中,DMI可以恢复数据库中的系统信息??这个数据库叫作MIFD(Management Information Format Database)。该BIOS允许动态实时更新DMI信息,DMI还允许在手工加入BIOS不能探测到的信息如使用者姓名、销售商、计算机编号等。管理者根据DMI提供的信息,很容易地发现系统故障。该接口不仅为管理者提供更多的方便,还能降低维护成本。

对称多处理结构
由于CPU速度和性能不断提高,微机服务器和工作站由于其突出的性能价格比,越来越受到重视。于是,支持对称多处理器结构的主板也相继问世。目前市场常见的多为支持两颗CPU的Pentium、Pentium Pro和Pentium Ⅱ 主板,主要用于小型服务器领域。在安装两颗CPU的情况下,性能比一颗时提高60%~80%。当然,只有在支持对称多处理器的操作系统下,比如Windows NT,才能发挥两颗CPU的功能。

绿色环保电脑
在计算机使用过程中,很多时候计算机设备是空闲的,可是却全功率运行着,既耗电也加快了系统的老化。绿色环保电脑增强了电脑的电源管理功能,使其在没有人使用或无程序运行时自动减少各部件的功耗,达到节省能源和保护机器的目的。
目前绿色环保电脑一般遵循EPA(Environmentd Protection Agency,美国环境保护署)标准,符合该标准的电脑在开机启动时会有一个黄色或绿色的EPA或Energy Star(能源之星)标志出现在屏幕上,如开机启动时的EPA显示图所示。EPA电脑在省电模式下系统耗电量低于30W,其各部件的定义如下:
(1)CPU (如Pentium)正常耗电约5W,进入休眠状态后只耗0.4W;
(2)显示器(一般符合DPMS规范):ON(开机)→等待(Standby)(<15W)→休眠(Suspend)(<15W)→off(<5W);
(3)硬盘:正常耗电3-10W,休眠时马达停转,耗电<1W。
由此可见,绿色环保电脑由“绿色主板”、“绿色CPU”、“绿色显示器”和“绿色硬盘”等部件组成,其中主板是关键部件,统率着各外围设备及CPU的绿色功能和对节能参数的设置。当某个外围设备不支持绿色环保功能时只影响到该子系统的省电模式不能实施,而主板不支持绿色功能则使所有的外设节能功能失效。
绿色环保电脑的省电模式按无操作时间长短(可设定)分以下几个档次:
◇Doze(打盹):CPU时钟频率降低,程序运行变慢。
◇Stand by(等待):CPU时钟频进一步降低,显示器黑屏。
◇Suspend(休眠):CPU停止运行,所有程序处于停顿状态,显示器进入关闭模式。有的主板将硬盘停转时间单独设置,也有的将其归入Suspend。一些新型的主板还支持Suspend状态下CPU风扇的停转,而ATX规格的主板更是支持软件控制开/关机,达到完全意义上的“绿色环保”。
在上述任何一种省电模式,只要接收到系统认可的启动信号,如鼠标移动、击键、MODEM呼叫等,均会激活电脑使其进入正常工作状态。
省电模式的等待时间间隔与系统认可的启动信号均在系统BIOS中设置。在配备了PC97要求的ACPI(高级电源管理)的主板上也可以通过操作系统(如Windows95)进行节能设置。

智慧型主板
所谓的智慧型主板,不同的主板生产厂家有不同的说法,有的认为智慧型主板应该没有跳线(NO JUMPER)、能自动设置CPU的类型、频率和内外电压;也有的认为能够自动侦测CPU和进行电压设置、CPU过热可以自动报警的主板称为智慧型主板;还有的主板本身并不是智慧型主板,但厂商称可以通过升级卡升级到智慧型主板。那么,到底什么样的主板才算是真正的智慧型主板呢?一般认为,应该满足下面两个条件:
1.智慧型主板首先应该采用无跳线技术设计
使用跳线的主要好处就是可以在同一主板上使用多种品牌型号的CPU,但缺点是存在跳线错误,轻则机器不能启动,重则烧毁CPU。486出现以前由于大多数CPU是焊死在主板上的,无法更换,所以真正自己跳过线的用户很少。随着奔腾时代的到来,部分主板已开始使用DIP开关取代跳线来控制CPU的工作状态。一般情况下,安装不同的CPU只需对照说明书拨动DIP跳线开关即可,这比装跳线器方便得多。
但CPU的种类和型号不断增多,设置DIP开关也变得越来越复杂,而且对普通用户来说仍显得太困难。正是在这样的环境下,无跳线的主板才应运而生。第一块这样的主板是联想生产的,随后联想又推出了430TX、40LX系列主板,这类主板的共同特点就是通过BIOS来设置CPU的类型、主频、总线频率和内外电压。一般情况下,用户只须插好CPU,开机启动,主板BIOS即可自动识别CPU种类、型号,并自动根据识别的CPU设置工作电压,根本不用关心是单电压还是双电压。当然,用户也可以自己手工设定CPU的时钟频率,BIOS将根据CPU类型设定缺省电压,用户还可以手工设定核心电压值,简单而灵活。如果因设置错误造成连续三次无法启动时,BIOS可自动将CPU频率设成最低并将BIOS参数设成缺省,进入BIOS重新设定。因为BIOS的数据库中存储有各种CPU的参数,所以对新式CPU的识别理论上可以通过升级BIOS来实现,当然这需要硬件上的支持,如主板提供的电压是否可满足新式CPU要求。因此,理论上的智慧型主机板可以将因错误设置跳线而造成的灾难性后果减小到零。由于无跳线技术的优越性,在联想的PDI-P51430系列之后,升技推出了X5、TX5 、IT5V、IT5H、SM5、SM5-A、AR5,承启推出了5TDM,联讯推出了KTX430、ATX431。
随着时间的推移,无跳线主板设计将成为一种潮流和时尚。需要说明的是,虽同为无跳线技术,但不同的主板厂家为其命名却各不相同,联想称这为SPEEDEASY,承启称之为SEEPU,联讯称之为SMARTSOFT,升技称之为SOFTMENU。
2.能够对CPU及系统运行状态进行自动监测
这一点主要体现在具有自动系统监察和能源管理方面,在自动系统监察方面,可自动监察CPU温度、CPU风扇转动情况、系统电压、温度、资源(包括内存资源和硬盘空间)、信号、输入、病毒入侵等,如当CPU或系统风扇停转、温度过高、系统电压问题、系统资源不足、病毒入侵时,将显示警告信息,如果未能引起用户的注意,将自动采取处理措施,例如当CPU温度过高时,将在屏幕上显示警告信息并自动将CPU运行速度减慢(如仅以75MHz运行),避免将CPU烧毁。
对CPU及系统的监控一般是通过使用LM75和LM78专用芯片来实现的。较高级的主板上,在CPU插座下面均安装有温度感应器,如LM75芯片(8个管脚),可感应CPU温度,当CPU温度过热时会发出警报。
在能源管理方面,应能支持PC97/98设计指南中的ACPI(高级配置和电源接口)标准,待机模式下可自动停止风扇转动,关闭硬盘、光驱、软驱等部件的电源,以降低耗电和噪音。另外应具备软件关机功能和调制解调器唤醒功能(如果在待机模式中有信号从调制解调器进入,将自动开机并启动接收功能,接收后恢复原状)。

ATX主板与AT主板的比较
前面提到“ATX”,是Intel制定的新的主板结构标准。“ATX”是“AT Extend”的缩写,那么95年Intel制定的ATX标准在哪些方面不同于84年IMB制定的已经成为工业标准的AT标准呢?其实,对于软件来说,AT主板和ATX主板是没有区别的,ATX相对于AT改进的主要方面是主板上各个元件的相对位置,因为随着CPU等元件的进步和电脑向多媒体、网络化方面发展,AT主板元件位置的不合理,越来越影响电脑的扩充能力和可靠性。ATX较好地解决了这些问题,必将成为下一代电脑内部结构的标准。目前,很多整机生产厂家都采用了ATX标准。下面我们详细地比较一下ATX主板和AT主板的情况,以便读者选用时参考。

AT主板的缺陷
AT主板的缺陷主要体现在下列四个方面:
1.CPU的位置不合理,造成了两方面的不良影响
首先,由于CPU所处位置散热通风条件不好,造成现在的高功耗CPU都需要一个专门的小风扇散热。在整个电脑中,这个小风扇的可靠性是最差的,往往因为小风扇的停转造成CPU的散热不良,从而导致频繁死机甚至CPU被烧毁。
其次,由于CPU位于扩展槽的后面,造成全长的扩展板卡无法插入,直接影响了电脑的扩充能力。另外,CPU旁边用于给CPU提供3.3V直流电源的稳压电路所用的散热片也影响了全长扩展板卡的使用。由于这两方面因素的影响,某些奔腾主板竟然无法插入一块全长扩充板卡。
全长扩展板现在还是很常见的,特别是多媒体方面,比如创通的所有SB声卡、VB视卡都是全长的。其它公司生产的电视卡、多媒体卡、影象捕捉卡大部分也是全长的板卡。
2.内存位置不合理,造成内存升级困难,也造成内存条散热不良
由于原来的AT标准中没有规定内存的位置,因此,造成现在主板上内存被安置在一个狭小而又不通风的角落里,影响了内存的安装、升级。特别是现代电脑的内存量越来越大,内存条上采用的内存芯片也越来越多,散热问题也越发重要,使矛盾更加突出。
3.主板的横向宽度太窄,使得直接从主板上引出接口的空间太小
目前由于多媒体化、网络化,电脑上安插的扩展板卡越来越多,为了缓解这种需求,可以把某些扩充卡的功能集成到主机板上,就象现在的主板都具有多功能卡的功能一样。但是问题出来了,虽然目前的技术已经可以在主板上集成更多的功能,但是由于输入输出信号线没有空间从主板上直接引出,必须使用特制线缆转到机箱的后部,占用扩展卡的位置转接出来。线缆的增多提高了成本,增加了电脑内的混乱程度,也给安装、维修带来不便,更为不利的是降低了整机的可靠性。
4.没有规定软硬盘接口及软硬盘支架的位置
组装电脑的时候,如果使用的是大型立式机箱,人们常在软硬盘的线缆上大费周折,因为大部分主板提供的线缆都是针对中小型机箱的,长度不够。软硬盘线缆过长,不仅也增加了电脑内连线的混乱,甚至还会因为硬盘线缆过长,造成某些高速硬盘无法发挥其特长,制约了电脑整体性能的提高。

ATX主板的改进
ATX与AT的区别,是把AT(Baby AT)主板上的组件旋转了90度。当然这只是表面现象,ATX具体的改进是:
1.把CPU的位置放在靠近主机电源的第二风扇的位置,让主机电源的散热风扇直接吹CPU,因此CPU上只需要一个散热片即可,甩掉了直接扣在CPU上性能不可靠的小散热风扇。CPU和稳压电路的散热片再也不会影响全长的扩展板卡的安装了。
2.内存条位于主板的中央,使得升级、安装方便。同时,从主机电源第二风扇吹来的气流也使得内存条的散热情况大大好转。
3.ATX主板的边缘直接提供了2个串口、1个并口、1个PS/2键盘和1个PS/2鼠标的接口,甚至有的主板还提供有一个游戏接口和三个音频接口,如华硕的SP98AGP-X主板。有效地减少了主机内部线缆的数目,提高了整机的可靠性,降低了电磁辐射和信号裒耗改善了整机的性能。
4.软硬盘接口现在放到了距软硬盘支架最近的地方,缩短了线缆的长度,有利于使用高速的UltraI硬盘。
5.ATX主板提供了3.3V直流电源。为了降低功耗,主板上使用3.3V低电压的设备越来越多,比如CPU、168线SDRAM内存等。采用ATX标准以后,主机电源直接提供了3.3V电压,因此减少了主板上采用的元件数,不仅降低了主板的成本,同时也有利于提高可靠性和机器的总体性能。

6.ATX标准的机箱在电源关闭的时候仍然可以提供5V、100 mA的直流电流,维持电脑内部一小部分电路在关机的情况下依然保持工作状态,便于实现遥控开机、软件关机、定时关机的功能。比如接到遥控开机信号或者电话呼叫信号之后,自动打开电脑电源进行处理。这个特征使电脑更象消费类电器。

ATX主板对机箱的要求
ATX主板必须使用ATX机箱,ATX机箱也只能安装ATX主板。这大概是使用ATX主板的限制。各种扩展板卡,无论是全长的ISA、EISA卡,还是PCI卡、键盘、串并口插头都能与AT主板通用。在ATX主板上的键盘和鼠标接口是PS/2,因此需要有这样的转换插头才能用现在的AT键盘。
目前的支持Pentium Ⅱ的主板多为ATX主板。显然,ATX主板必然是当今微电脑的主流。

LZ应学会google或baidu

上书店问问吧,大一点的图书大厦里都应该有

不清楚什么意思啊



显卡的结构及工作原理?~

显卡的结构和工作原理

显卡是目前大家最为关注的电脑配件之一了,他的性能好坏直接关系到显示性能的好坏及图像表现力的优劣等等。然而许多初学者对显卡这个东西并不是十分了解的,下面笔者搜集了一批资料并以图解的形式对显卡结构做一简单的介绍,希望你看后能对显卡有一定的了解。
显卡的基本结构
显卡的主要部件包括:显示芯片,显示内存,RAMDAC等。
显示芯片:一般来说显卡上最大的芯片就是显示芯片,显示芯片的质量高低直接决定了显示卡的优劣,作为处理数据的核心部件,显示芯片可以说是显示卡上的CPU,一般的显示卡大多采用单芯片设计,而专业显卡则往往采用多个显示芯片。由于3D浪潮席卷全球,很多厂家已经开始在非专业显卡上采用多芯片的制造技术,以求全面提高显卡速度和档次。
显示内存:与系统主内存一样,显示内存同样也是用来进行数据存放的,不过储存的只是图像数据而已,我们都知道主内存容量越大,存储数据速度就越快,整机性能就越高。同样道理,显存的大小也直接决定了显卡的整体性能,显存容量越大,分辨率就越高。
一:结构--全面了解显示卡(一)
一.图解显示卡。
1.线路板。
显卡的线路板是显卡的母体,显卡上的所有元器件必须以此为生。目前显卡的线路板一般采用的是6层PCB线路板或4层PCB线路板,如果再薄,那么这款显卡的性能及稳定性将大打折扣。另外,大家可看见显卡的下面有一组“金手指”(显示卡接口),它有ISA/PCI/AGP等规范,它是用来将显卡插入主板上的显卡插槽内的。当然,为了让显卡和主机更好的固定,显卡上需要有一块固定片;为了让显卡和显示器及电视等输入输出设备相连,各种信号输出输入接口也是必不可少的。

2.显卡上常见的元器件。
现在的显卡随着技术上的进步,其采用的元器件是越来越少越来越小巧。下面我们给大家介绍几种显卡上常见的元器件。
a.主芯片:主芯片是显示卡的灵魂。可以说采用何种主显示芯片便决定了这款显示卡性能上的高低。目前常见的显卡主芯片主要有nVidia系列及ATI系列等等,如Geforce2 GTS,Geforce2 MX,Geforce3,ATI Radeon等。此外,由于现在的显卡频率越来越高工作时发热量也越来越大,许多厂家在显卡出厂家已给其加上了一个散热风扇。
b.显存:显存也是必不可少的。现在的显卡一般采用的是SDRAM,SGRAM,DDR三种类别的显存,以前常见的EDO等类别的显存已趋淘汰。它们的差别是--SGRAM显存芯片四面皆有焊脚,SDRAM显存只有两边有焊脚,而DDR显存除了芯片表面标记和前两者不同外,那就是芯片厚度要比前两者明显薄。
c.电容电阻:电容电阻是组成显卡不能或缺的东西。显卡采用的常见的电容类型有电解电容,钽电容等等,前者发热量较大,特别是一些伪劣电解电容更是如此,它们对显卡性能影响较大,故许多名牌显卡纷纷抛弃直立的电解电容,而采用小巧的钽电容来获得性能上的提升。电阻也是如此,以前常见的金属膜电阻碳膜电阻越来越多的让位于贴片电阻。
d.供电电路:供电电路是将来自主板的电流调整后供显卡更稳定的工作。由于显示芯片越造越精密,也给显卡的供电电路提出了更高的要求,在供电电路中各种优良的稳压电路元器件采用是少不了的。
e.FLASH ROM:存放显卡BIOS文件的地方。
f.其它:除此之外,显卡上还有向显卡内部提供数/模转换时钟频率的晶振等小元器件。
全面了解显示卡

PCB板
PCB板是一块显卡的基础,所有的元件都要集成在PCB板上,所以PCB板也影响着显卡的质量。目前显卡主要采用黄色和绿色PCB板,而蓝色、黑色、红色等也有出现,虽然颜色并不影响性能,但它们在一定程度上会影响到显卡出厂检验时的误差率。另外,目前不少显卡采用4层板设计,而一些做工精良的大厂产品多采用了6层PCB板,抗干扰性能要好很多。PCB板的好坏直接影响显示的稳定性。
显示芯片
我们在显示卡上见到的“个头”最大的芯片就是显示芯片,它们往往被散热片和风扇遮住本来面目,显示芯片专门负责图像处理。常见的家用型显卡一般都带有一枚显示芯片,但也有多芯片并行处理的显卡,比如ATI RAGE MAXX和大名鼎鼎的3dfx Voodoo5系列显卡。
显示芯片按照功能来说主要分为“2D”(如S3 64v+)“3D”(如3dfx Voodoo)和"2D+3D"(如Geforce MX)几种,目前流行的主要是2D+3D的显示芯片。
位(bit指的是显示芯片支持的显存数据宽度,较大的带宽可以使芯片在一个周期内传送更多的信息,从而提高显卡的性能。现在流行的显示芯片多位128位和256位,也有一小部分64位芯片显卡。“位”是显示芯片性能的一项重要指标,但我们并不能按照数字倍数简单判定速度差异。
显示内存
显存也是显卡的重要组成部分,而且显存质量、速度、带宽等的重要性已经越来越明显。显存是用来存储等待处理的图形数据信息的,分辨率越高,屏幕上显示的像素点也越多,相应所需显存容量也较大。而对于目前的3D加速卡来说,则需要更多的显存来存储Z-Buffer数据或材质数据等。
我们知道,在显卡工作中,显示芯片将所处理的图形数据信息传送到显存中,随后RAMDAC从显存中读取数据并将数字信号转化为模拟信号,输出到显示器上。所以,显存的速度及数据传输带宽直接影响了显卡的速度。数据传输带宽是指显存一个周期内可以读入的数据量影响显卡的速度。显存容量决定了显卡支持的分辨率、色深,而刷新率由RAMDAC决定。
显存可以分为两大类:单端口显存和双端口显存。前者从显示芯片读取数据及向RAMDAC传输数据经过同一端口,数据的读写和传输无法同时进行;顾名思义,双端口显存则可以同时进行数据的读写与传输。目前主要流行的显存有SDRAM、SGRAM、DDR RAM、VRAM、WRAM等。
RAMDAC(数/模转换器)
RAMDAC作用是将显存中的数字信号转换成显示器能够识别的模拟信号,速度用“MHz”表示,速度越快,图像越稳定,它决定了显卡能够支持的最高刷新频率。我们通常在显卡上见不到RAMDAC模块,那是因为厂商将RAMDAC整合到显示芯片中以降低成本,不过仍有部分高档显卡采用了独立的RAMDAC芯片。
VGA BIOS
VGA BIOS存在于Flash ROM中,包含了显示芯片和驱动程序间的控制程序、产品标识等信息。我们常见的Flsah ROM编号有29、39(见图1)和49开头的3种,这几种芯片都可以通过专用程序进行升级,改善显卡性能,甚至可以给显卡带来改头换面的效果。



图1 VGA BIOS
VGA功能插针
VGA功能插针(见图2)是显卡与外部视频设备交换数据的通道,通常用于扩展显卡的视频功能,比如连接解压卡等,虽然它存在于很多显卡当中,但利用率非常低。



图2 VGA插针
VGA 插座(D-SUB)
VGA插座一般为15针RGB接口(见图3),某些书籍及报刊称之为D-SUB接口。显卡与显示器之间的连接需要VGA插座来完成,它负责向显示器输出图像信号。在一般显卡上都带有一个VGA插座,但也有部分显卡同时带有两个VGA插座,使一块显示卡可以同时连接两台显示器,比如MGA G400DH和双头GeForce MX。



图3 VGA插座
另外,部分显卡还同时带有视频输入(Video in)、输出(Video out)端子(见图4)、S端子(见图5)或数字DVI接口(见图6)。视频输出端口和S端子的出现使得显卡可以将图像信号传输到大屏幕彩电中,获取更佳的视觉效果。数字DVI接口用于连接LCD,这需要显示芯片的支持。具有这些接口的显卡通常也可以称为双头显卡,双头显卡一般需要单独的视频控制芯片。现在市场上有售的耕升的GeForce2 ULT显卡同时拥有DVI接口和S-Video接口,是少见的全能产品。
工作原理

我们必须了解,资料 (data) 一旦离开 CPU,必须通过 4 个 步骤,最后才会到达显示屏:
1、从总线 (bus) 进入显卡芯片 -将 CPU 送来的资料送到显卡芯片里面进行处理。 (数位资料)
2、从 video chipset 进入 video RAM-将芯片处理完的资料送到显存。 (数位资料)
3、从显存进入 Digital Analog Converter (= RAM DAC),由显示显存读取出资料再送到 RAM DAC 进 行资料转换的工作(数位转类比)。 (数位资料)
4、从 DAC 进入显示器 (Monitor)-将转换完的类比资料送到显示屏 (类比资料)
如同你所看到的,除了最后一步,每一步都是关键,并且对整体的显示效能 (graphic performance) 关系十分重大。
注: 显示效能是系统效能的一部份,其效能的高低由以上四步所决定,它与显示卡的效能 (video performance) 不太一样,如要严格区分,显示卡的效能应该受中间两步所决定,因为这两步的资料传输都是在显示卡的内部。第一步是由 CPU 进入到显示卡里面,最后一步是由显示卡直接送资料到显示屏上,这点要了解。
最慢的步骤就是整体速度的决定步骤 (注: 例如四人一组参加 400 公尺接力,其中有一人跑的特别慢,全组的成绩会因它个人而被拖垮,也许会殿后。但是如果他埋头苦练,或许全队可以得第一,所以跑的最慢的人是影响全队成绩的关键,而不是哪些已经跑的很快的人)。
现在让我们来看看每一步所代表的意义及实际所发生的事情:
CPU 和显卡芯片之间的资料传输
这受总线的种类和总线的速度(也就是外频),主机板和他的芯片组所决定。 目前最快的总线是 PCI bus,而 VL bus, ISA, EISA and NuBus (Macs 专用) 效能就比较低。
现在流行的AGP并不是一种总线,而只是一种接口方式(注: PCI bus 是 32 bit data path,也就是说 CPU 跟 显示卡之间是以一次 4 byte 的资料在对传,其他的 bus 应该是 16 bit data path)。
PCI bus 的最快速度是 33 MHz 。
显卡芯片和显存之间的资料传输以及从显存到 RAM DAC 的资料传输
我把这两步放在一起是因为这里是影响显示卡效能的关键所在, 假如你不考虑显卡芯片的个别差异。
显示卡的最大的问题就是,可怜的显存夹在这两个非常忙碌的装置之间 (显卡芯片和 RAMDAC),必须随时受它们两个差遣。
每一次当显示屏画面改变,芯片就必须更改显示显存里面的资料 (这动作是连续进行的,例如移动滑鼠游标,键盘游标......等等)。 同样的,RAM DAC 也必须不断地读取显存上的资料,以维持画 面的刷新。 你可以看到,显存在他们之间被捉的牢牢的。
所以后来出现了一些聪明的做法,像是使用 VRAM, WRAM, MDRAM, SGRAM, EDO RAM, 或增加 video bus 的大小如 32 bit, 64bit, 还有现在刚出现的 128 bit。
解析度越高,从芯片传到显存的资料就越多。 而 RAM DAC 从显存读取资料的速度就要更快才行。 你可以看到,芯片和和RAM DAC 随时都在对显存 进行存取的工作。
一般 DRAM 的速度只能被存取到一个最大值(如 70ns 或 60ns),所以 在芯片结束了存取 (read/write) 显存之后, 才能换 RAM DAC 去读取显存,如此一直反覆不断。
显卡的主要术语与参数

一.明白显卡的常见术语。
了解了显卡的外表,最后让我们再来了解一下显卡的流行术语,这样对你认识显卡更有由表及里的帮助作用。
1.AGP:(ACCELERATED GRAPHICS PORT图形加速端口)AGP实际上是PCI接口的超集,它做为一种新型接口将显示卡同主板芯片组进行了直接连接,从而大幅度提高了电脑对3D图形的处理能力。在处理大的纹理图形时AGP显卡除了使用卡上的显存外还可以通过DIME直接内存执行功能使用系统内存,AGP显卡视频传输率在X2模式下就可达到533MB/S。
*AGP8X:AGP8X是Intel制定的新一代的图像传输规格,它将作为下一代的个人电脑及工作站的新显示标准。AGP (Accelerated Graphics Port)是由Intel公司所制订的显示接口标准,速度已由最初的AGP 1x (264 MBytes/sec,3.3v)到现在的AGP 4x (1 GBytes/sec,1.5v),因为AGP拥有高速频宽,所以广受众多显示芯片厂家的支持,推出了很多支持AGP 4X/PRO的不同产品来以满足用户对图像运算、高画质要求的要求。Intel宣布的AGP 8x,依旧使用32-bit的总线架构,而速度方面则提升至533 MHz,及支持2GBytes/sec,是AGP 4x的两倍。速度的提升,即代表了显示芯片制造商能更好的利用AGP 8x的优点来充份发挥显示芯片的效能。
2.API。
API全称为(Application Programming Interface)应用程序接口。
API的原理是当某一个应用程序提出一个制图请求时,这个请求首先要被送到操作系统中,然后通过GDI(图形设备接口)和DCI(显示控制接口)对所要使用的函数进行选择。而现在这些工作基本由Direct X来进行,它远远超过DCI的控制功能,而且还加入了3D图形API(应用程序接口)和Direct3D。显卡驱动程序判断有那些函数是可以被显卡芯片集运算,可以进行的将被送到显卡进行加速。如果某些函数无法被芯片进行运算,这些工作就交给CPU进行(影响系统速度)。运算后的数字信号写入帧缓存中,最后送入RAMDAC,在转换为模拟信号后输出到显示器。由于API是存在于3D程序和3D显示卡之间的接口,它使软件运行在硬件之上,为了使用3D加速功能,就必须使用显示卡支持的API来编写程序,比如Glide, Direct3D或OpenGL等等来获得性能上的提升。
常见的API主要有以下几种:
*.Direct X。
说起显卡我们不得不说说它。这是微软公司专为PC游戏开发的API(应用程序接口),它的主要特点是:比较容易控制,可令显卡发挥不同的功能,并与WINDOWS系统有良好的兼容性。
*.OpenGL。
OpenGL开放式图形界面是由SG公司开发用于WINDOWS,MACOS,UNIX等系统上的API。它除了提供有许多图行运算处理功能外,其3D图形功能很强,甚至超过Direct X很多。
*.Glide。
这是3DFX公司首先在VOODOO系列显卡上应用的专用3D API,它可以最大限度的发挥VOODOO显示芯片的3D图形处理能力。由于它很少考虑兼容性,所以工作效率要比OpenGL和D3D要高。
3.RAMDAC。
RAMDAC(RANDOM ACCESS MEMORY DAC,数模转换芯片)它的作用是将电脑内的数字信号代码转换为显示器所用的模拟信号的东西。此芯片决定显示器所表现出的分辨率及图像显示速度。RAM DAC根据其寄存器的位数分为8位,16位,24位等等,8位RAMRAC只能显示256色,而真彩卡支持的16M色,它的RAMRAC必须为24位。另外,RAM DAC的工作速度越高,则相应的显示速度也越快,如在75Hz的刷新率和1280X1024的分辨率下RAM DAC的速度至少要达到150MHz。
4.显存。
显存,显示存储器,其作用是以数字形式存储图行图像资料。通过专门的图形处理芯片可直接从卡上的显存调用有关图形图像资料,从而减轻了CPU的负担缩短了通过总线传输的时间,提高了显示速度,可以说显存的大小与速度直接影响到视频系统的图形分辨率,色彩精度和显示速度。常见的显存和当时主流的内存使用情况基本相同
显示卡(Display Card),也叫显卡,是电脑最基本组成部分之一。显卡控制着PC的脸面——显示器,使它能够呈现供我们观看的字符和图形画面。早期的显卡只是单纯意义的显卡,只起到信号转换的作用;目前我们一般使用的显卡都带有图形加速功能,所以也叫做“图形加速卡”。本期我们将为大家介绍有关显示卡的知识。
显示卡通常由总线接口、PCB板、显示芯片、显存、RAMDAC、VGA BIOS、VGA功能插针、VGA插座及其他外围元件构成
主要参数

CGA (COlor Gaphics Adapter:彩色图形适配卡〕
IBM公司于1982年开发并推出了一种可支持彩色显示器的显示即CGA卡,它能够显示16种颜色,可达到640X200的分辨率,可工作于文本和图形方式下。
EGA (Enhanced Graphics Adapter:增强图形适配卡)
在CGA的基础上IBM公司于1984年推出了EGA卡。EGA将显示分辨率提高到640X350,同时与CGA完全兼容,可显示的颜色数据提高到了64种显示内存也扩展到256K。
VGA (Video Graphics Array:视频图形阵列)
1987年IBM公司在PS/2 (微通道计算机)电脑上,首次推了VGA卡,今天虽已难觅PS/2的影踪,但VGA早已成为业界标准。VGA达到了640X480的分辨率,并与MDA、CGA、EGA保持兼容,它增加二个6位DAC转换电路从而首次实现了从显示卡上直接输出R.G.B模拟信号到显示器,可显示的颜色增加到256色并且可支持大于256K的显示存储器容量。
SVGA (Suoer VGA 超级视频图形阵列)
SVGA是由VESA(视频电了标准学会,一个由众多显示卡生产而所组成的联盟)1989年推出的。它规定,超过VGA 640X480分辨率的所有图形模式均称为SVGA,SVGA标准允许分辨率最高达到1600X1200,颜色数最高可达到16兆(1600万)色。同时它还规定在800X600的分辨率下,至少要达到72Hz的刷新频率。
IBM在VGA的基础上,1989年推出了8514A,它可以达到1024X768的分辨率是对VGA的低分辨率的提高,但由于这一标准只能用于IBM的PS/2电脑其技术资料不对外公开,并且采用了导致高闪烁的隔行扫描方式,因此,未能像IBM过去的几个产品那样成为业界标,很快就被淘汰了。
XGA (Extended Graphic Array:增强图形阵列)
由于8514A的失败,IBM在1990年又推出了XGA,XGA与8514A同样达到了1024X768的分辨率,在64OX480时可以达到65536种颜色。它最大的改进是允许逐行扫描方式并且针对Windows的图形界面操作作了很大的改进,用硬件方式实现了图形加速,如位块传输、画线、硬件子图形等,它还使用了VRAM作为显示存储器,因此大大提高了显示速度。
显示分辨率 (Resolution)
指视频图像所能达到的清晰度,由每幅图像在显示屏幕的水平和垂直方向上的像素点数来表示比如说某显示分辨率为640X480。就是说凡水平方向上有640个像素、垂直方向上有480个像素。
像素(Pixel)
Pixel是Picture element (图像元素)的简写。像素是组成显示屏幕上的点,是显示画面的最小组成单位。
点距(Dot Pitch)
指显示屏幕上同色荧光点的最短距离,它决定着像素的大小和显示图像的清晰度。通点距有0.39,0.31,0.28,0.26,0.25及0.20等几种规格。
颜色深度(Color Depth)
指每个像素可显示的颜色数。每个像素可显示的颜色数取决于显示卡上给它所分配的DAC位数,位数越高,每个像素可显示出的颜色数目就越多。但是在显示分辨率一定的情况下一块显示卡所能显示的颜色数目还取决于其显示存储器的大小。比如一块两兆显存的显示卡,在1024X768的分辨率下,就只能显示16位色(即65536”种颜色),如果要显示24位彩色(16.8M), 就必须要四兆显存。
伪彩色(Pseudo Color)
如果每个像素使用的是1个字节的DAC位数 (即8位),那么每个像素就可以显示出256种颜色,这种颜色模式称为“伪彩色”又叫8位色。
高彩色(High Color)
如果给每个像素分配2个字节的DAC位数(即16位),则每个像素可显示的颜色最多可以达到65536种,这种颜色模式称为“高彩色” ,又叫“16位色”。
真彩色(True Color)
在显示存储器容量足够的情况下,如果给每个像素分配3个字节的DAC (即24位),那么每个像素可显示的颜色则可达到不可思议的1680万种(168M色)——尽管人眼可分辨的颜色只是其中很少一部分而已,这种颜色模式就是“真彩色”,又叫“24位色”。目前较好的显示卡已经达到了32位色的水平。
刷新频率(Refresh Rate )
在显示卡输出的同步信号控制下,显示器电于束先对屏幕从左到右进行水平扫描,然后又很快地从下到上进行垂亘扫描,这两遍扫描完成后才组成一幅完整的画面,这个扫描的速度就是刷新频率,意思就是每秒钟内屏幕画向更新的次数,刷新频率越高,显示画面的闪烁就越小。
带宽(Bandwidth )
显示存储器同时输入输出数据的最大能力,常以每秒存取数据的最大字节数MB/S)来表示越高的刷新频率往往需要越大的带宽。
纹理映射
每一个3D造型都是由众多的三角形单元组成的,要使它显示的更加真实的话,就要在它的表面粘贴上模拟的纹理和色彩,比如一块大理石的纹理等。而这些纹理图像是事先放在显示存储器中的,将之从存储器中取出来并粘贴到3D造型的表面,这就是纹理映射。
Z缓冲(Z-BUFFERING)
Z的意思就是除X 、Y轴以外的第三轴,即3D立体图型的深度。Z缓冲是指在显示存储器中预先存放不同的3D造型数据,这样,当画面中的视角发生变化时,可以即时地将这些变化反映出来从而避免了由于运算速度滞后所造成的图形失真。
3D显卡

3D显卡术语简介
如今3D显示技术的发展日新月异,各种最新一代的显示卡蕴含着最新的技术不断的涌现,各个显示芯片厂商也都在新产品的介绍中展示着产品的独特性能与3D特效,其中许多诸如“三线过滤”、“阿尔法混合”、“材质压缩”、“硬件T&L”等等名词可能会令您疑惑不解,本文就是为您通俗的来解释阐述这些专业术语,以使您能对枯燥的3D术语能有所把握。
这些最新的3D显示技术与特性是在目前3D显卡中正流行的或是将要广泛流行的技术标准,展望未来,在21世纪中显示技术也必将进入一个新的阶段,面对着纷繁的显示技术与显卡市场,要知最后花落何家呢,还是让我们拭目以待吧!
16-, 24-和32-位色
16位色能在显示器中显示出65,536种不同的颜色,24位色能显示出1670万种颜色,而对于32位色所不同的是,它只是技术上的一种概念,它真正的显示色彩数也只是同24位色一样,只有1670万种颜色。对于处理器来说,处理32位色的图形图像要比处理24位色的负载更高,工作量更大,而且用户也需要更大的内来存运行在32位色模式下。
2D卡
没有3D加速引擎的普通显示卡。
3D卡
有3D图形芯片的显示卡。它的硬件功能能够完成三维图像的处理工作,为CPU减轻了工作负担。通常一款3D加速卡也包含2D加速功能,但是还有个别的显示卡只具有3D图像加速能力,比如Voodoo2。
Accelerated Graphics Port (AGP)高速图形加速接口
AGP是一种PC总线体系,它的出现是为了弥补PCI的一些不足。AGP比PCI有更高的工作频率,这就意味着它有更高的传输速度。AGP可以用系统的内存来当作材质缓存,而在PCI的3D显卡中,材质只能被储存在显示卡的显存中。
Alpha Blending(透明混合处理)
它是用来使物体产生透明感的技术,比如透过水、玻璃等物理看到的模糊透明的景象。以前的软件透明处理是给所有透明物体赋予一样的透明参数,这显然很不真实;如今的硬件透明混合处理又给像素在红绿蓝以外又增加了一个数值来专门储存物体的透明度。高级的3D芯片应该至少支持256级的透明度,所有的物体(无论是水还是金属)都由透明度的数值,只有高低之分。
Anisotropic Filtering (各向异性过滤)
(请先参看二线性过滤和三线性过滤)各向异性过滤是最新型的过滤方法,它需要对映射点周围方形8个或更多的像素进行取样,获得平均值后映射到像素点上。对于许多3D加速卡来说,采用8个以上像素取样的各向异性过滤几乎是不可能的,因为它比三线性过滤需要更多的像素填充率。但是对于3D游戏来说,各向异性过滤则是很重要的一个功能,因为它可以使画面更加逼真,自然处理起来也比
三线性过滤会更慢。
Anti-aliasing(边缘柔化或抗锯齿)
由于3D图像中的物体边缘总会或多或少的呈现三角形的锯齿,而抗锯齿就是使画面平滑自然,提高画质以使之柔和的一种方法。如今最新的全屏抗锯齿(Full Scene Anti-Aliasing)可以有效的消除多边形结合处(特别是较小的多边形间组合中)的错位现象,降低了图像的失真度,全景抗锯齿在进行处理时, 须对图像附近的像素进行2-4次采样, 以达到不同级别的抗锯齿效果。3dfx在驱动中会加入对2x2或4x4抗锯齿效果的选择, 根据串联芯片的不同, 双芯片Voodoo5将能提供2x2的抗锯齿效果, 而四芯片的卡则能提供更高的4x4抗锯齿级别。 简而言之,就是将图像边缘及其两侧的像素颜色进行混合,然后用新生成的具有混合特性的点来替换原来位置上的点以达到柔化物体外形、消除锯齿的效果。
API(Application Programming Interface)应用程序接口
API是存在于3D程序和3D显示卡之间的接口,它使软件运行与硬件之上。为了使用3D加速功能,就必须使用显示卡支持的API来编写程序,比如Glide, Direct3D或是OpenGL。
Bi-linear Filtering(二线性过滤)
是一个最基本的3D技术,现在几乎所有的3D加速卡和游戏都支持这种过滤效果。当一个纹理由小变大时就会不可避免的出现“马赛克”现象,而过滤能有效的解决这一问题,它是通过在原材质中对不同像素间利用差值算法的柔化处理来平滑图像的。其工作是以目标纹理的像素点为中心,对该点附近的4个像素颜色值求平均,然后再将这个平均颜色值贴至目标图像素的位置上。通过使用双线性过滤,虽然不同像素间的过渡更加圆滑,但经过双线性处理后的图像会显得有些模糊。

楼主你好, 这个原理很简单。 这个还是要分AMD还是INTEL的主板 , 主板就是哥桥梁 ,所有的运作还有数据的传输都要在这个板子上进行、流动。 这里 我把整个电脑运作原理告诉你, AMD的全套运作和INTER的是不一样的,因为AMD的CPU集成了北桥而INTER的CPU没有集成北桥,像显卡、PCIE、内存 等都是属于北桥范围,他们需要北桥和CPU进行数据交换和处理,像鼠标、键盘、等I/O 接口都是南桥范围,他们需要南桥和CPU进行数据的交换处理。 电脑运行时,数据经过内存经过北桥进入CPU进行处理 ,CPU处理完后经过北桥直接传给显卡,显卡再经过自己的图形处理显示到屏幕上,现在的显卡已经可以和CPU一样可以辅助CPU共同计算处理。 简单的:1 硬盘或外界的信息--内存--经北桥---CPU--北桥--显卡--显示屏。2. 鼠标键盘 等I/O 接口 --南桥--CPU--南桥--I/O借口。 1、2 同时进行 这就是电脑的运行。

相关要点总结:

15890082960:网卡的原理与构造
佴吴答:网络有半双工(half duplex)与全双工(full duplex)之分,半双工网卡无法同一时间内完成接收与传送数据的动作,如10base2使用细同轴电缆的网络架构就是半双工网络,同一时间内只能进行传送或接收数据的工作,效率较低。要使用全双工的网络就必须要使用双绞线作为传输线才能达到,并且也要搭配使用全双工的集线器,要使用10base或...

15890082960:plc的组成及工作原理
佴吴答:能驱动特定设备的信号,以驱动执行机构的动作。(4)编程器编程器是PLC重要的外部设备,利用编程器可将用户程序送入PLC的用户程序存储器,调试程序、监控程序的执行过程。编程器从结构上可分为以下三种类型。(1)简易编程器(2)图形编程器(3)通用计算机编程器(5)电源 请点击输入图片描述 ...

15890082960:电脑主机内都有什么部件,各部件的作用是什么?
佴吴答:电脑主机由哪些基本部件组成,各种部件的作用是什么? 显示器,主机板,记忆体,硬碟,CPU,显示卡,光碟机,软碟机,机箱电源,键盘,滑鼠 详细点说就是: 1 硬体系统: 电脑的硬体系统由输入装置、主机和输出装置组成。外部资讯经输入装置输入主机,由主机分析、加工、处理,再经输出装置输出。 #1 输入输出装置: 电脑只能识别...

15890082960:主机由哪些部分组成?
佴吴答:一、主板 电脑机箱主板,又叫主机板(mainboard)、系统板(systemboard)或母板(motherboard);它分为商用主板和工业主板两种。它安装在机箱内,是微机最基本的也是最重要的部件之一。主板一般为矩形电路板,上面安装了组成计算机的主要电路系统,一般有BIOS芯片、I/O控制芯片、键盘和面板控制开关接口、指示灯...

15890082960:自动取款机内部的结构及工作原理是什么?
佴吴答:一、要了解其工作原理,就先要了解它的的构造。\x0d\x0a对ATM来说,就是一台非常简单的机器。这台机器有着厚重的保险钢甲,装甲厚度超过一般的保险箱,毕竟这东西里边放的是现金,安全第一。用密码和钥匙打开门后,能看到里边分为上下二层,上层有一台普通的电脑主机、屏幕对外的显示器、读卡器,...

15890082960:计算机的组成及它的各个部件 最好还有他的图片
佴吴答:为了更好地理解电脑是如何工作的,我们需要再花点时间重点了解一下电脑的主机。我们拆散主机,它的主要构件就是主机板、内存条、硬盘驱动器、软盘驱动器、光盘驱动器、声卡、显示卡及调制解调器。主机板,是一台主机的骨架,大多数设备都得通过它连在一起; CPU,英文名叫Central Processing Unit,意思就...

15890082960:电脑主机内部的结构及各自的功能
佴吴答:主机主要由主板,CPU,内存,硬盘,光驱。显卡,声卡,网卡,电源,机箱等组成的。CPU(中央处理器):电脑的“心脏”或“大脑”,相对于人的心脏重要,主板:电脑的“骨架”主板是连接各个板卡部件的架构,相对于组成人的区干吧。内存:电脑的“中枢神经”内存是最主要的存储设备,作用是暂时存放CPU中的...

15890082960:请问显示卡是什么?
佴吴答:民用和军用显卡图形芯片供应商主要包括AMD(超微半导体)和Nvidia(英伟达)2家。现在的top500计算机,都包含显卡计算核心。在科学计算中,显卡被称为显示加速卡。核芯显卡是Intel产品新一代图形处理核心,和以往的显卡设计不同,Intel凭借其在处理器制程上的先进工艺以及新的架构设计,将图形核心与处理核心整合...

15890082960:电脑主机的 主板 啥用?
佴吴答:工作原理 主板的分类 主板构成部分 常见问题解答 主板驱动 编辑本段主板的简介 主板,又叫主机板(mainboard)、系统板(systembourd)和母板(motherboard);它安装在机箱内,是微机最基本的也是最重要的部件之一。 主板一般为矩形电路板,上面安装了组成计算机的主要电路系统,一般有BIOS芯片、I/O控制芯片、键盘和面板控制...

15890082960:电脑主机由哪几部分组成,各有什么用
佴吴答:常用输出设备有显示器、打印机和喇叭。② 主板: 也称主机板,是安装在主机机箱内的一块矩形电路板,上面安装有电脑的主要电路系统。主板的类型和档次决定着整个微机系统的类型和档次,主板的性能影响着整个微机系统的性能。 主板上安装有控制芯片组、BIOS芯片和各种输入输出接口、键盘和面板控制开关接口、指示灯插接件、...

(编辑:本站网友)
相关推荐
关于我们 | 客户服务 | 服务条款 | 联系我们 | 免责声明 | 网站地图
@ 百韵网