百韵网 >>  正文

植物对矿质元素的吸收原理是怎样的?

来源:www.baiyundou.net   日期:较早时间
植物根部细胞表面吸附的阳离子、阴离子与土壤溶液中阳离子、阴离子发生交换的过程就叫交换吸附

根部之所以能够进行交换吸附,是由于根部细胞膜的表面有阴、阳两种离子,其中主要是H+和HCO-3,这些离子主要是由呼吸作用放出的CO2和H2O生成的H2CO3所离解出来的。H+和HCO-3能够迅速地分别与周围溶液中的阳离子和阴离子进行交换吸附,盐类离子就被吸附在细胞的表面上。这种吸附是不需要能量的,而且吸附的速度很快。

1、将离子吸附在根部细胞表面:主要通过交换吸附进行。所谓交换吸附是指根部细胞表面的正负离子(主要是细胞呼吸形成的CO2和H2O生成H2CO3再解离出的H+和HCO3-)与土壤中的正负离子进行交换,从而将土壤中的离子吸附到根部细胞表面的过程。在根部细胞表面,这种吸附与解吸附的交换过程是不断在进行着的。具体又分成三种情形:
①土壤中的离子少部分存在于土壤溶液中,可迅速通过交换吸附被植物根部细胞表面吸附,该过程速度很快且与温度无关。根部细胞表面吸附层形成单分子层吸附即达极限。
②土壤中的大部分离子被土壤颗粒所吸附。根部细胞对这部分离子的交换吸附通过两种方式进行:一是通过土壤溶液间接进行。土壤溶液在此充当“媒介”作用;二是通过直接交换或接触交换(contact exchange)进行。这种方式要求根部与土壤颗粒的距离小于根部及土壤颗粒各自所吸附离子振动空间的直径的总和。在这种情况下,植物根部所吸附的正负离子即可与土壤颗粒所吸附的正负离子进行直接交换。

植物的根对矿质元素的吸收方式是什么 ????~

主动运输 通过线粒体的有氧呼吸供能 对矿质元素吸收 如果氧气不足 那么植物的根对矿质元素会受到阻碍

细胞从环境中吸收矿质元素的实质即溶质的跨膜运转或跨膜传递(transport across membrane)。植物细胞吸收矿质元素的方式:被动吸收(passive absorption)、主动吸收(active absorption)、胞饮作用(pinocytosis) 离子的选择性积累:1)积累(accumulation):活细胞吸收某溶质(离子),最终使胞内该溶质(离子)的浓度(Ci)远远高于其胞外浓度(Co)的现象。积累的程度以积累率(Ci/Co)衡量。2)选择性(selectivity):细胞吸收某溶质(离子)的量不与环境溶液中该溶质(离子)的量成比例,并且在溶液中存在其他溶质(离子)时其吸收相对独立。3)竞争性抑制(competitive inhibition):细胞在吸收某些离子对(ion pair)中的离子时存在的相互抑制的现象。这些离子对如:K+-Rb+;Cl--Br-;Ca2+-Sr2+;SO42--SeO42- 等。该现象说明细胞吸收这些离子对的机制相似,或这些离子对在膜上有相同的结合位置。电化学势梯度:1)化学势梯度(chemical potential gradient):膜两侧某溶质的浓度差构成该溶质的浓度梯度,此浓度梯度亦即该溶质的化学势梯度。2)电势梯度(electrical potential gradient):膜两侧某溶质的电荷差构成该溶质的电势差,即电势梯度。3)电化学势梯度(electrochemical potential gradient):膜两侧带电荷溶质既有电势梯度,同时又有化学势梯度。二者合称为电化学势梯度。细胞吸收不带电荷的溶质与膜两侧该溶质的化学势梯度有关;细胞吸收带电荷的溶质则与膜两侧该溶质的电化学势梯度有关。就某个离子而言,其跨膜电势梯度与其化学势梯度(或离子分布)之间的关系可用能斯特方程(Nernst equation)来表示:Δen/j = -2. 3RT/z F × lg Cij/Coj上式表示离子j在膜内外被动转运(扩散)达到平衡时膜内外电势差与化学势差之间的关系。 扩散作用(diffusion):某物质从其电化学势较高的区域向其电化学势较低的区域发生净转移,即物质顺其电化学势梯度移动的现象。扩散作用可简称为扩散。扩散不会导致物质逆其电化学势的积累。细胞与环境之间的物质转移可以通过扩散作用进行。植物细胞经扩散作用而吸收物质不消耗细胞代谢能量,属于被动吸收(非代谢性吸收)。物质跨越细胞膜的扩散作用可分为单纯扩散与易化扩散。单纯扩散:某物质(溶质)不需要其他物质辅助,而顺其电化学势梯度进行的跨膜转移。非极性溶质(如O2、CO2、NH3)均可以单纯扩散方式较快地通过脂质双分子层。极性较强的水分子通过膜上的水通道蛋白—水孔蛋白(aquaporin)也可轻松地以扩散方式跨膜运送。易化扩散:某物质(溶质)通过扩散作用跨膜转移时,需要膜上的某些特殊蛋白质(膜传递蛋白)的帮助。以此种方式进行的扩散即为易化扩散(facilitated diffusion)。极性溶质以扩散方式跨膜转移时往往需要通过易化扩散进行。这将比其以单纯扩散转移快得多。非极性物质也可通过易化扩散来进行跨膜转移。 膜传递蛋白:细胞膜上具有转运功能的蛋白质。主要包括通道蛋白和载体蛋白两类。均为膜上的束缚蛋白。(一)通道蛋白:简称通道(channel)或离子通道(ion channel)。通道蛋白的构象可随环境变化而变化。通道蛋白在某种构象时中间会形成允许离子通过的孔道。离子通过通道取决于两方面因素:1)从通道蛋白讲,通道孔的大小及孔内表面电荷使得通过通道的离子具有选择性(专一性);2)从将要通过通道的离子本身讲,离子带电情况与其水合规模是其通过通道转移时通透性的限定因素。离子经通道蛋白进行扩散为易化扩散。离子通过离子通道扩散的速率:106~108个/s。离子通道的“门”现象:离子通道的“开”和“关”。已知该现象受跨膜电势梯度和外界理化信号的刺激并对其作出反应。离子经离子通道跨膜转移可产生出pA级的电流,用特制的仪器可对此电流加以检测。并据此对通道特性及所通过的离子属性加以确定。膜片-钳位技术(patch-clamp technique)与膜片-钳仪。应用上述技术,已在植物质膜和液泡膜上发现了一系列离子通道。(二)载体蛋白:载体蛋白:载体(carrier)、传递体(transport)、透过酶(permease,penetrase)、运输酶(transport enzyme)。溶质(离子)经载体运转的特点:选择性(专一性)、饱和效应。因此具有酶的属性:Km 及Vmax值的变化及其意义。溶质(离子)经载体进行的转运既可以是主动的(逆电化学势梯度进行),也可以是被动的(易化扩散方式)。溶质(离子)经载体进行的转运速率低于经通道进行的转运(约为104~105个/S)。载体的种类:单向传递体(uniporter)、同向传递体(symporter)、反向传递体(antiporter)等。(三) H+-ATP酶与主动转运:1、ATP酶与主动转运ATP酶即ATP磷酸水解酶(ATP phosphorhydrolase)。该酶为跨膜的多聚蛋白体复合物,系特殊的载体。该酶既可催化ATP水解为ADP和Pi,也可催化ADP与Pi合成为ATP。即可催化可逆反应:ATP + H2O→ADP +Pi +32 kJATP酶所催化的ATP水解为放能反应,其释放的能量可用于离子的主动转运。因此ATP酶具有“泵”的性质。由于依赖ATP酶的转运会导致膜两侧电势差的形成,因此ATP酶也被称为“电致泵(electrogenic pump)。1)ATP酶与主动转运溶质中的H+、K+、Na+、Ca2+等阳离子及Cl-等阴离子可利用ATP酶水解ATP时释放的能量直接进行主动转运。转运这些离子的ATP酶相应地被称为质子(H+)泵、钾泵、钠泵、钙泵等。其中的质子泵最为重要。2)H+-ATP酶与主动转运质子(H+)是通过ATP酶进行主动转运最主要的离子。这种主动转运H+的ATP酶即H+-ATP酶或质子泵。H+-ATP酶(或质子泵)与钾泵、钙泵等其他离子泵的最大区别是质子泵除完成主动转运质子(H+)的功能外,还伴随着对其他溶质(离子)的主动转运。前者为质子泵的初级主动转运(primary acative transport),后者则为质子泵的次级主动转运。质子动力:H+-ATP酶利用ATP水解释放的能量将质子(H+)从膜的一侧运至另一侧,结果形成跨膜的电势梯度(ΔE )及化学势梯度(ΔpH),此二者则合称为质子电化学势梯度(Δμ H+)。Δμ H+ = FΔE-2 .3RTΔpHΔμ H+ 也被称为质子动力(proton motive force,pmf)。该动力将推动质子返回膜的原来一侧。次级共转运:通过初级转运的质子在返回膜的原来一侧时,必须通过膜上的载体才能被动地扩散回去,与此同时通过同一载体转运其他溶质(离子)。这种质子伴随其他溶质通过同一载体进行的转运即为次级共转运或协同转运(cotransport)。这样,在初级主动转运中形成的质子动力即被用来进行其他溶质(离子)的主动转运。次级共转运的类型:同向转运(共向转运,symport)——被转运物质与H+同向越过膜的转运;阴离子与中性物质通常以此种方式进行跨膜转运。反向转运(antiport)——被转运物质与H+反向越过膜的转运。一些阳离子可以此种方式转运。单向转运(uniport)—— 仅与膜电势梯度(ΔE)相关联的转运,属于需要载体的易化扩散。参与单向转运的载体被称为单向传递体。质子泵的主要类型(1)质膜质子泵:即质膜H+-ATP酶,分子量约为200KD,水解ATP活性位点在质膜细胞质一侧。最适pH为6 .5,底物为Mg2+-ATP。K+可刺激其活性。该酶以H3O+形式泵出H+,H+/ATP计量近似1。正钒酸盐(ortho-vanadate)为质膜质子泵的专一抑制剂。己烯雌酚(DES)对该酶也有一定抑制效果。过量的Mg2+或ATP也会对该酶产生抑制效应。质膜质子泵与物质跨质膜转运关系密切。此外,质膜质子泵与许多生理过程有关,故又被称为主宰酶(master enzyme)。(2)液泡膜质子泵:液泡膜质子泵由液泡膜H+-ATP酶及液泡膜焦磷酸酶组成。其中液泡膜H+-ATP酶有以下特点:分子量400KD,水解ATP的活性位点在液泡膜的细胞质一侧。H+/ATP计量约为2~3。Cl-、Br-、I-等对该酶有激活作用。该酶可被硝酸盐抑制,但不被钒酸盐抑制。液泡膜H+-ATP酶与跨液泡膜的物质转运有密切关系。液泡膜上的焦磷酸酶能够利用焦磷酸的水解而参与跨液泡膜Δμ H+的建立。(3)线粒体膜与叶绿体膜上的H+-ATP酶:分子量约为450KD,H+/ATP计量约为3,酶活性受叠氮化钠(NaN3)的抑制。此类酶的生理作用已在呼吸作用、光合作用等章节论述。 1、对矿质元素和水分的相对吸收:植物对矿质元素的吸收和对水分的吸收不成正比例,二者之间既相关联,又各自独立。根本原因:二者的吸收机制不同。2、离子的选择性吸收:植物根系吸收离子的数量与溶液中离子的数量不成比例的现象。该现象的基础在于植物细胞吸收离子的选择性。植物根系吸收离子的选择性主要表现在两个方面:①植物对同一溶液中的不同离子的吸收不同;②植物对同一种盐的正负离子的吸收不同。由此派生出三种类型的盐:生理酸性盐(physiologically acid salt),如(NH4)2SO4;生理碱性盐,如NaNO3、Ca(NO3)2等;生理中性盐,如NH4NO3。3、单盐毒害和离子对抗:①单盐毒害:植物在单盐溶液中不能正常生长甚至死亡的现象被称为单盐毒害(toxicity of single salt)。所谓单盐溶液,是指只含有一种盐份(或一种金属离子)的盐溶液。单盐毒害的特点是:a. 单盐毒害以阳离子的毒害明显,阴离子的毒害不明显;b. 单盐毒害与单盐溶液中盐份是否为植物所必需无关。②离子对抗:在单盐溶液中加入少量含其他金属离子的盐类,单盐毒害现象就会减弱或消除。离子间的这种作用即被称作离子对抗或离子颉颃(ion antagonism)。 离子对抗的特点:a. 元素周期表中不同族的金属元素的离子之间一般有对抗作用;b. 同价的离子之间一般不对抗。例如:Na+或K+可以对抗Ba2+和Ca2+。单盐毒害和离子对抗的的实质:可能与不同金属离子对细胞质和质膜亲水胶体性质(或状态)的影响有关。平衡溶液:由多种盐份组成的对植物生长无毒害作用的溶液。土壤溶液对陆生植物、海水对海藻等均为天然的平衡溶液。人工配制的Hoagland溶液也是平衡溶液。 1、将离子吸附在根部细胞表面:主要通过交换吸附进行。所谓交换吸附是指根部细胞表面的正负离子(主要是细胞呼吸形成的CO2和H2O生成H2CO3再解离出的H+和HCO3-)与土壤中的正负离子进行交换,从而将土壤中的离子吸附到根部细胞表面的过程。在根部细胞表面,这种吸附与解吸附的交换过程是不断在进行着的。具体又分成三种情形:①土壤中的离子少部分存在于土壤溶液中,可迅速通过交换吸附被植物根部细胞表面吸附,该过程速度很快且与温度无关。根部细胞表面吸附层形成单分子层吸附即达极限。②土壤中的大部分离子被土壤颗粒所吸附。根部细胞对这部分离子的交换吸附通过两种方式进行:一是通过土壤溶液间接进行。土壤溶液在此充当“媒介”作用;二是通过直接交换或接触交换(contact exchange)进行。这种方式要求根部与土壤颗粒的距离小于根部及土壤颗粒各自所吸附离子振动空间的直径的总和。在这种情况下,植物根部所吸附的正负离子即可与土壤颗粒所吸附的正负离子进行直接交换。③有些矿物质为难溶性盐类,植物主要通过根系分泌的有机酸或碳酸对其逐步溶解而达到吸附和吸收目的的。2、离子进入根部内部:①通过质外体(非质体,apoplast)途径进入根部内部。质外体:质外体或自由空间,指植物体内由细胞壁、细胞间隙、导管等所构成的允许矿物质、水分和气体自由扩散的非细胞质开放性连续体系。表观自由空间(apparent free space,AFS):自由空间占组织总体积的百分比。AFS一般为5%~20%。由于真正的自由空间很难测定,通常即以RFS来代替衡量。RFS也可称为相对自由空间(relative free space,RFS)。离子经质外体运送至内皮层时,由于有凯氏带的存在,离子(和水分)最终必须经共质体途径才能到达根部内部或导管。这使得根系能够通过共质体的主动转运及对离子的选择性吸收控制离子的运转。另外,在内皮层中还有一种通道细胞可作为离子和水分转运的途径之一。②通过共质体途径进入根部内部。共质体(symplast):植物体内细胞原生质体通过胞间连丝和内质网等膜系统相联而成的连续体。溶质经共质体的运输以主动运输为主。3、离子进入导管:离子经共质体途径最终从导管周围的薄壁细胞进入导管。其机理尚不甚明确。 1. 土壤温度 土壤温度过高或过低,都会使根系吸收矿物质的速率下降。高温(如超过40℃)使酶钝化,影响根部代谢,也使细胞透性加大而引起矿物质被动外流。温度过低,代谢减弱,主动吸收慢,细胞质粘性也增大,离子进入困难。同时,土壤中离子扩散速率降低。2. 土壤通气状况 根部吸收矿物质与呼吸作用密切有关。土壤通气好,增强呼吸作用和ATP的供应,促进根系对矿物质的吸收。3. 土壤溶液的浓度 土壤溶液的浓度在一定范围内增大时,根部吸收离子的量也随之增加。但当土壤浓度高出此范围时,根部吸收离子的速率就不再与土壤浓度有密切关系。此乃根细胞膜上的传递蛋白数量有限所致。而且,土壤溶液浓度过高,土壤水势降低,还可能造成根系吸水困难。因此,农业生产上不宜一次施用化肥过多,否则,不仅造成浪费,还会导致“烧苗”发生。4. 土壤溶液的pH值(1)直接影响根系的生长。大多数植物的根系在微酸性(pH5.5~6.5)的环境中生长良好,也有些植物(如甘蔗、甜菜等)的根系适于在较为碱性的环境中生长。(2)影响土壤微生物的活动而间接影响根系对矿质的吸收。当土壤偏酸(pH值较低)时,根瘤菌会死亡,固氮菌失去固氮能力。当土壤偏碱(pH值较高)时,反硝化细菌等对农业有害的细菌发育良好。这些都会对植物的氮素营养产生不利影响。(3)影响土壤中矿质的可利用性。这方面的影响往往比前面两点的影响更大。土壤溶液中的pH值较低时有利于岩石的风化和K+、Mg2+、Ca2+、Mn2+等的释放,也有利于碳酸盐、磷酸盐、硫酸盐等的溶解,从而有利于根系对这些矿物质的吸收。但pH值较低时,易引起磷、钾、钙、镁等的淋失;同时引起铝、铁、锰等的溶解度增大,而造成毒害。相反,当土壤溶液中pH值增高时,铁、磷、钙、镁、铜、锌等会形成不溶物,有效性降低。5. 土壤水分含量 土壤中水分的多少影响土壤的通气状况、土壤温度、土壤pH值等,从而影响到根系对矿物质的吸收。6. 土壤颗粒对离子的吸附 土壤颗粒表面一般都带有负电荷,易吸附阳离子。7. 土壤微生物 菌根的形成可增强根系对矿物质和水的吸收。固氮菌、根瘤菌等有固氮能力。而反硝化细菌则引起NO3—N损失。8. 土壤中离子间的相互作用 溶液中某一离子的存在会影响另一离子的吸收。例如,溴的存在会使氯的吸收减少;钾、铷和铯三者之间互相竞争。

相关要点总结:

13420777679:矿物质对植物的影响
昌沾答:胞饮作用是细胞将吸附在质膜上的矿物质通过膜的内折而转移到细胞内的过程。胞饮作用是非选择性吸收,大分子物质甚至病毒通过胞饮作用进入细胞内。胞饮作用在植物细胞中不很普遍。(二)根系对矿质元素的吸收 根系对矿质元素的吸收是以细胞吸收为基础的。但根系吸收矿质元素有其自身的特点。首先,根系对...

13420777679:简述植物吸收水分和矿质元素的异同?
昌沾答:相互关联性:矿质元素一定要溶于水才能被根系吸收,并随水流进入根内,而矿质元素的吸收降低了细胞的渗透势,促进了植物的吸水。相互独立性表现在两者的吸收机制不同:水分的吸收主要以蒸腾作用引起的被动吸水为主,矿质元素的吸收以消耗代谢能的主动吸收为主。两者的分配方向不同:水分主要分配到叶片,...

13420777679:植物吸收的矿质元素在体内运输的主要动力来自?
昌沾答:吸收动力:主动运输,消耗细胞代谢产生ATP 运输动力:蒸腾作用产生拉力 植物吸收矿物离子是依靠根的呼吸作用来提供动力.尤其是有氧呼吸,氧化葡萄糖时候放出的能量 而矿物离子在植物体内一溶液的形式在维管束木质部的导管内运输,其动力有两个方面 一是土壤的根压,这个比较小 二是叶片蒸腾作用产生的蒸腾拉力,...

13420777679:植物根系对矿质元素的吸收和运输
昌沾答:植物根系对矿质元素的吸收是主动运输的过程,需要载体和消耗能量的,与土壤溶液的浓度无关系,与载体的数量和氧浓度有关。对矿质元素运输是通过导管进行的,动力是蒸腾作用产生的拉力。与水的运输途径和动力相同。

13420777679:植物是怎么吸收磷的?
昌沾答:磷是矿质元素,吸收的动力是蒸腾作用 磷是一种无机盐,无机盐是与水一起进入植物体内的,植物的吸收是靠根尖成熟区吸收的.当植物体外的无机盐的浓度大于植物的成熟区细胞的细胞液的浓度时,植物体就会从外界吸收无机盐.细胞膜的主动运输,需要消耗ATP 主动运输是逆浓度阶梯运输的,由于磷离子较大,要靠...

13420777679:为促进光合作用植物从土壤中吸收的矿物质元素
昌沾答:矿质元素在土壤溶液中主要以离子形式存在,因此植物根系吸收矿质元素的方式是主动运输.主动运输需要消耗能量,因此疏松土壤可以提高土壤中氧气含量,从而使有氧呼吸强度提高,促进矿质元素的吸收.故选:D.

13420777679:植物水分的吸收对矿质元素吸收有何联系?
昌沾答:矿质元素必须先溶解于水中才能被吸收。植物的根部组织在浸到水溶液以后,才会发生矿质元素的吸收,这时候水分无疑也被吸收了。但是,这两类物质的吸收并不是经常一致的,矿质元素的吸收并不是吸收水分的时候被带进去的。例如,甘蔗白天吸水比晚上大10倍,但对磷的吸收,白天比晚上只稍微多一点。又如...

13420777679:植物的根毛细胞吸收矿物质的主要方式是?
昌沾答:植物体吸收矿质元素可通过叶片,但主要是通过根部。一、根部对溶液中矿质元素的吸收过程(Asorption processes)根部吸收矿物质的部位也主要是根尖,其中根毛区吸收离子最活跃。根部吸收溶液中的矿物质是经过以下几个步骤的:1、离子吸附在根部细胞表面 根部细胞在吸收离子的过程中,同时进行着离子的吸附与...

13420777679:根部细胞吸收的矿质元素通过什么途径和动力运输到叶片
昌沾答:根部细胞吸收矿质元素的途径是:1.离子吸附在根部细胞表面。2.离子进入根的内部。3.离子通过被动扩散或主动 运输进入导管或管胞。矿质元素同样通过根压和蒸腾拉力,随着水分运输到叶片。植物吸收矿物离子是依靠根的呼吸作用来提供动力.尤其是有氧呼吸,氧化葡萄糖时候放出的能量,而矿物离子在植物体内一溶液...

13420777679:植物吸水和吸收矿质元素是相互还是相对独立
昌沾答:植物吸水与吸收矿质元素 根吸收矿质离子的过程和吸收水分的过程很容易被误认为是同一过程。其实,它们是两个相对独立的过程,即根对矿质元素的吸收和对水分的吸收既有区别又有联系。 1、区别(1)矿质元素与水分进入根细胞的方式不同。水分是通过自由扩散进入细胞的,矿质元素离子是通过主动运输...

(编辑:本站网友)
相关推荐
关于我们 | 客户服务 | 服务条款 | 联系我们 | 免责声明 | 网站地图
@ 百韵网